Optimization in Edge Computing: A Survey
DOI:
https://doi.org/10.58564/IJSER.2.2.2023.72Keywords:
Optimization, Edge Computing, IoT and Task OffloadingAbstract
Due to advancement, there are now more smart devices connected to the internet., which causes massive data traffic in the network. Resulting in many problems such as slow response time, largely consumed energy, high load in transmission channels, and bad use of the network resources in the traditional cloud. Edge computing facilities and brings the cloud's service to the network's edge. Edge computing a distributed computing near to source of data. This technology solved and helps to solve many problems in the cloud, but also has challenges and open issues, for example, the limited lifetime of the IoT devices, limited resources, and computation offloading. The performance of edge computing is affected by offloading. So, many optimization methods are used to solve this problem and improve the performance in edge computing. This paper presents a survey of the studies related to optimizing task offloading in edge computing. The difference between this work and the previous surveys is that this survey combined offloading and optimization with the types of optimization methods and takes into consideration the three layers of edge computing architecture IoT, the Edge layer, and the cloud layer. The previous surveys did not include all types of optimization or combine the offloading with optimization. The architecture of edge computing, challenges, and open issues, optimization methods are presented.
References
EkramHossain, No Fog, Edge, and Pervasive Computing in Intelligent IoT Driven Applications, vol. 4, no. 1. 2557.
Y. Chen, N. Zhang, Y. Wu, and S. Shen, Energy Efficient Computation Offloading in Mobile Edge Computing. Wireless Networks, 2022.
Suparyanto dan Rosad (2015, Edge Computing Fundementals,Advances and Application, vol. 5, no. 3. 2020.
Z. He and K. Li, “Server configuration optimization in mobile edge computing : A cost-performance tradeoff perspective,” no. July 2020, pp. 1–28, 2021, doi: 10.1002/spe.2951.
P. Arthurs, L. Gillam, P. Krause, N. Wang, K. Halder, and A. Mouzakitis, “A Taxonomy and Survey of Edge Cloud Computing for Intelligent Transportation Systems and Connected Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 6206–6221, 2022, doi: 10.1109/TITS.2021.3084396.
L. A. Haibeh, M. C. E. Yagoub, and A. Jarray, “A Survey on Mobile Edge Computing Infrastructure: Design, Resource Management, and Optimization Approaches,” IEEE Access, vol. 10, pp. 27591–27610, 2022, doi: 10.1109/ACCESS.2022.3152787.
P. Wang, K. Li, B. Xiao, and K. Li, “Multiobjective Optimization for Joint Task Offloading, Power Assignment, and Resource Allocation in Mobile Edge Computing,” IEEE Internet Things J., vol. 9, no. 14, pp. 11737–11748, 2022, doi: 10.1109/JIOT.2021.3132080.
Z. Wang, P. Li, S. Shen, and K. Yang, “Task offloading scheduling in mobile edge computing networks,” Procedia Comput. Sci., vol. 184, no. 2019, pp. 322–329, 2021, doi: 10.1016/j.procs.2021.03.041.
N. Kumari, A. Yadav, and P. K. Jana, “Task offloading in fog computing: A survey of algorithms and optimization techniques,” Comput. Networks, vol. 214, no. July, 2022, doi: 10.1016/j.comnet.2022.109137.
K. Sadatdiynov, L. Cui, L. Zhang, J. Z. Huang, S. Salloum, and M. S. Mahmud, “A review of optimization methods for computation offloading in edge computing networks,” Digit. Commun. Networks, no. April 2021, 2022, doi: 10.1016/j.dcan.2022.03.003.
L. Liu, C. Chen, J. Feng, T. T. Xiao, and Q. Q. Pei, “A Survey of Computation Offloading in Vehicular Edge Computing Networks,” Tien Tzu Hsueh Pao/Acta Electron. Sin., vol. 49, no. 5, pp. 861–871, 2021, doi: 10.12263/DZXB.20200936.
P. Cong, J. Zhou, L. Li, K. Cao, T. Wei, and K. Li, “A Survey of Hierarchical Energy Optimization for Mobile Edge Computing: A Perspective from End Devices to the Cloud,” ACM Comput. Surv., vol. 53, no. 2, 2020, doi: 10.1145/3378935.
X. Shan, H. Zhi, P. Li, and Z. Han, “A Survey on Computation Offloading for Mobile Edge Computing Information,” Proc. - 4th IEEE Int. Conf. Big Data Secur. Cloud, BigDataSecurity 2018, 4th IEEE Int. Conf. High Perform. Smart Comput. HPSC 2018 3rd IEEE Int. Conf. Intell. Data Secur., pp. 248–251, 2018, doi: 10.1109/BDS/HPSC/IDS18.2018.00060.
H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey on computation offloading modeling for edge computing,” J. Netw. Comput. Appl., vol. 169, p. 102781, 2020, doi: 10.1016/j.jnca.2020.102781.
A. Shakarami, M. Ghobaei-Arani, and A. Shahidinejad, “A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective,” Comput. Networks, vol. 182, no. August, p. 107496, 2020, doi: 10.1016/j.comnet.2020.107496.
M. Maray and J. Shuja, “Computation Offloading in Mobile Cloud Computing and Mobile Edge Computing: Survey, Taxonomy, and Open Issues,” Mob. Inf. Syst., vol. 2022, 2022, doi: 10.1155/2022/1121822.
L. Lin, X. Liao, H. Jin, and P. Li, “Computation Offloading Toward Edge Computing,” no. 1, pp. 1–15.
W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, “Edge computing: A survey,” Futur. Gener. Comput. Syst., vol. 97, no. April, pp. 219–235, 2019, doi: 10.1016/j.future.2019.02.050.
C. Surianarayanan, J. J. Lawrence, P. R. Chelliah, E. Prakash, and C. Hewage, “A Survey on Optimization Techniques for Edge Artificial Intelligence (AI),” Sensors, vol. 23, no. 3, p. 1279, 2023, doi: 10.3390/s23031279.
Y. Zhang, Edge, 9th ed. USA: Creative Commons Attribution 4.0 International, 2022.
I. Sittón-Candanedo, R. S. Alonso, J. M. Corchado, S. Rodríguez-González, and R. Casado-Vara, “A review of edge computing reference architectures and a new global edge proposal,” Futur. Gener. Comput. Syst., vol. 99, no. 2019, pp. 278–294, 2019, doi: 10.1016/j.future.2019.04.016.
C. Martin Fernandez, M. Diaz Rodriguez, and B. Rubio Munoz, “An edge computing architecture in the internet of things,” Proc. - 2018 IEEE 21st Int. Symp. Real-Time Comput. ISORC 2018, pp. 99–102, 2018, doi: 10.1109/ISORC.2018.00021.
R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, Fog et al.: A survey and analysis of security threats and challenges,” Futur. Gener. Comput. Syst., vol. 78, pp. 680–698, 2018, doi: 10.1016/j.future.2016.11.009.
T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, and D. O. Wu, “Edge Computing in Industrial Internet of Things: Architecture, Advances and Challenges,” IEEE Commun. Surv. Tutorials, vol. 22, no. 4, pp. 2462–2488, 2020, doi: 10.1109/COMST.2020.3009103.
P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on Architecture and Computation Offloading,” IEEE Commun. Surv. Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017, doi: 10.1109/COMST.2017.2682318.
B. Dab, N. Aitsaadi, and R. Langar, “Q-Learning Algorithm for Joint Computation Offloading and Resource Allocation in Edge Cloud,” IEEE/IFIP Int. Symp. Integr. Netw. Manag., pp. 45–52, 2017.
C. Wang, C. Dong, J. Qin, X. Yang, and W. Wen, “Energy-efficient Offloading Policy for Resource Allocation in Distributed Mobile Edge Computing,” 2018 IEEE Symp. Comput. Commun., pp. 366–372, 2018.
X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Performance Optimization in Mobile-Edge Computing via Deep Reinforcement Learning,” in IEEE Vehicular Technology Conference, 2018, vol. 2018-Augus, doi: 10.1109/VTCFall.2018.8690980.
X. Gu, L. Jin, N. Zhao, and G. Zhang, “Energy-Efficient Computation Offloading and Transmit Power Allocation Scheme for Mobile Edge Computing,” Mob. Inf. Syst., vol. 2019, 2019, doi: 10.1155/2019/3613250.
H. Li, S. Ci, C. Yang, X. Tan, S. Hou, and Z. Wang, “Moving to Green Edges : A Cooperative MEC Framework to Reduce Energy Demand of Clouds,” 2019 IEEE Globecom Work. (GC Wkshps), pp. 1–6, 2019.
K. Li, “Computation Offloading Strategy Optimization with Multiple Heterogeneous Servers in Mobile Edge Computing,” IEEE Trans. Sustain. Comput., vol. XX, pp. 1–1, 2019, doi: 10.1109/tsusc.2019.2904680.
J. Fu, J. Hua, J. Wen, H. A. O. Chen, and J. Li, “Optimization of energy consumption in the MEC-assisted multi-user FD-SWIPT system,” vol. 4, 2020, doi: 10.1109/ACCESS.2020.2969467.
Z. Chen, J. Hu, G. Min, and X. Chen, “Effective data placement for scientific workflows in mobile edge computing using genetic particle swarm optimization,” no. March 2019, pp. 1–11, 2020, doi: 10.1002/cpe.5413.
L. Chen, J. Wu, and J. Zhang, “Long-term optimization for MEC-enabled HetNets with device – edge – cloud collaboration,” Comput. Commun., vol. 166, no. October 2020, pp. 66–80, 2021, doi: 10.1016/j.comcom.2020.11.011.
P. Yan, “Optimizing Mobile Edge Computing Multi-Level Task Offloading via Deep Reinforcement Learning,” in IEEE International Conference on Communications (ICC), 2020, p. 7.
W. Li, F. Wang, Y. Pan, L. Zhang, and J. Liu, “Computing Cost Optimization for Multi-BS in MEC by Offloading,” Springer Nat. Mob. Networks Appl., 2020.
L. T. Hsieh, H. Liu, Y. Guo, and R. Gazda, “Quality of Service Optimization in Mobile Edge Computing Networks via Deep Reinforcement Learning,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2020, vol. 12384 LNCS, pp. 145–157, doi: 10.1007/978-3-030-59016-1_13.
Z. Lv and L. Qiao, “Optimization of collaborative resource allocation for mobile edge computing,” Int. J. Comput. Telecommun. Ind. Int. J. Comput. Telecommun. Ind. Int. J. Comput. Telecommun. Ind. Comput. Commun. ne, vol. 161, no. July, pp. 19–27, 2020, doi: 10.1016/j.comcom.2020.07.022.
C. Zhan, H. Hu, X. Sui, Z. Liu, and D. Niyato, “Completion Time and Energy Optimization in the UAV-Enabled Mobile-Edge Computing System,” IEEE Internet Things J., vol. 7, no. 8, pp. 7808–7822, 2020, doi: 10.1109/JIOT.2020.2993260.
S. Xiao, C. Liu, K. Li, and K. Li, “System delay optimization for Mobile Edge Computing,” Futur. Gener. Comput. Syst., vol. 109, pp. 17–28, 2020, doi: 10.1016/j.future.2020.03.028.
Z. Liao, J. Peng, B. Xiong, and J. Huang, “Adaptive offloading in mobile-edge computing for ultra-dense cellular networks based on genetic algorithm,” J. Cloud Comput., vol. 10, no. 1, p. 16, 2021, doi: 10.1186/s13677-021-00232-y.
G. Peng, H. Wu, H. Wu, and S. Member, “Constrained Multiobjective Optimization for IoT-Enabled Computation Offloading in Collaborative Edge and Cloud Computing,” vol. 8, no. 17, pp. 13723–13736, 2021.
Z. Kuang, Z. Ma, Z. Li, and X. Deng, “Cooperative computation offloading and resource allocation for delay minimization in mobile edge computing ✩,” J. Syst. Archit., vol. 118, no. July 2020, p. 102167, 2021, doi: 10.1016/j.sysarc.2021.102167.
A. Abbas, A. Raza, F. Aadil, and M. Maqsood, “Meta-heuristic-based offloading task optimization in mobile edge computing,” Int. J. Distrib. Sens. Networks, vol. 17, no. 6, 2021, doi: 10.1177/15501477211023021.
B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopoulos, “Challenges and Opportunities in Edge Computing,” Proc. - 2016 IEEE Int. Conf. Smart Cloud, SmartCloud 2016, pp. 20–26, 2016, doi: 10.1109/SmartCloud.2016.18.
S. Liu, L. Liu, J. Tang, B. Yu, Y. Wang, and W. Shi, “Edge Computing for Autonomous Driving: Opportunities and Challenges,” Proc. IEEE, no. 1, pp. 1–15, 2019, doi: 10.1109/JPROC.2019.2915983.
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and Challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, 2016, doi: 10.1109/JIOT.2016.2579198.
E. Ahmed and M. H. Rehmani, “Mobile Edge Computing: Opportunities, solutions, and challenges,” Futur. Gener. Comput. Syst., vol. 70, pp. 59–63, 2017, doi: 10.1016/j.future.2016.09.015.
H. Li, G. Shou, Y. Hu, and Z. Guo, “Mobile edge computing: Progress and challenges,” in Proceedings - 2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering, MobileCloud 2016, 2016, pp. 83–84, doi: 10.1109/MobileCloud.2016.16.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Raghad Jassim Mohammed, Shaymaa W. Al-Shammari
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.