A Survey - Intelligent Reflecting Surface Beyond 5G

Authors

  • Areej Abdulkareem Computer Engineering Department, College of Engineering, Al-Iraqia University, Baghdad, Iraq
  • Satea H. Alnajjar Computer Engineering Department, College of Engineering, Al-Iraqia University, Baghdad, Iraq

DOI:

https://doi.org/10.58564/IJSER.2.2.2023.69

Keywords:

Intelligent reflecting surface (IRS) , wireless communications , metasurface , reconfigurable intelligent surface (RIS)

Abstract

In the coming decade, we'll see the rollout of the intelligent information society—a highly digitalized, intelligent civilization that draws inspiration from AI and runs on global data. Next-generation or modern communication networks are crucial to bringing this ambitious plan to fruition because of their promise of universal connectivity, full 360-degree wireless coverage, and the seamless integration of all necessary functions to power truly vertical apps. Research in this area has shown that the Intelligent Reflective Surface (IRS) combined with wireless environment management capability is a viable solution for 6G technology. To be more specific, the IRS is capable of precise 3D passive beam formation due to the wavefront's phases, amplitude, frequency, and polarization being controlled intelligently by tunable components. In this article, we provide an overview of the IRS, including categorizing recent IRS research theory, and we also review IRS's structure, controller, tunable chips, and design hardware architecture. Finally, as a timely review of the IRS, our summary will be of interest to both researchers and practitioners involved.

References

Zhang, H., Di, B., Song, L., & Han, Z. (n.d.). Reconfigurable Intelligent Surfaces assisted Communications with Limited Phase Shifts: How Many Phase Shifts Are Enough?

Hassouna, S., Rains, J., urRehmanKazim, J., Ur Rehman, M., Ali Jamshed Mohammad Abualhayja, M., Mohjazi, L., Jun Cui, T., Ali Imran, M., &Abbasi James Watt, Q. H. (2022). A Survey on Intelligent Reflecting Surfaces: Wireless Communication Perspective.

Li, X., Fang, J., Gao, F., & Li, H. (2019). Joint Active and Passive Beamforming for Intelligent Reflecting Surface-Assisted Massive MIMO Systems.

Okogbaa, F. C., Ahmed, Q. Z., Khan, F. A., Abbas, W. bin, Che, F., Zaidi, S. A. R., &Alade, T. (2022). Design and Application of Intelligent Reflecting Surface (IRS) for Beyond 5G Wireless Networks: A Review. In Sensors (Vol. 22, Issue 7).MDPI

Zhao, J. (2019). A Survey of Intelligent Reflecting Surfaces (IRSs): Towards 6G Wireless Communication Networks.

Sharma, T., Chehri, A., & Fortier, P. (2021). Reconfigurable Intelligent Surfaces for 5G and beyond Wireless Communications: A Comprehensive Survey. Energies, 14(24), 8219

Mirza, J., & Ali, B. (2019).Channel Estimation Method and Phase Shift Design for Reconfigurable Intelligent Surface Assisted MIMO Networks.

Gong, S., Lu, X., Hoang, D. T., Niyato, D., Shu, L., Kim, D. I., & Liang, Y.-C. (2019). Towards Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey.

Pérez-Adán, D., Fresnedo, Ó., Gonzalez-Coma, J. P., &Castedo, L. (2021). Intelligent reflective surfaces for wireless networks: An overview of applications, approached

Patel, A., &Shukla, A. (2022).A review on intelligent reflecting surface-based terahertz communication.In Indonesian Journal of Electrical Engineering and Computer Science (Vol. 25, Issue 3, pp. 1580–1588).Institute of Advanced Engineering and Science.

Zhou, T., Xu, K., Xie, W., Shen, Z., Wei, C., Liu, J., & Sun, L. (2021). Aerial intelligent reflecting surface-enhanced cell-free massive MIMO for high-mobility communication: joint Doppler compensation and power optimization. Eurasip Journal on Advances in Signal Processing, 2021(1).

Mei, W., Zheng, B., You, C., & Zhang, R. (2021).Intelligent Reflecting Surface Aided Wireless Networks: From Single-Reflection to Multi-Reflection Design and Optimization.

Björnson, E., Wymeersch, H., Matthiesen, B., Popovski, P., Sanguinetti, L., & de Carvalho, E. (2021). Reconfigurable Intelligent Surfaces: A Signal Processing Perspective With Wireless Applications.

Basar, E., &Yildirim, I. (2020). Reconfigurable Intelligent Surfaces for Future Wireless Networks: A Channel Modeling Per

Wymeersch, H., He, J., Denis, B., Clemente, A., &Juntti, M. (2020). Radio Localization and Mapping with Reconfigurable Intelligent Surfaces: Challenges, Opportunities, and Research Directions. IEEE Vehicular Technology Magazine, 15(4), 52–61spective.

Costa, F., &Borgese, M. (2021).Electromagnetic Model of Reflective Intelligent Surfaces.IEEE Open Journal of the Communications Society, 2, 1577–1589.

Sievenpiper, D. F., Schaffner, J. H., Jae Song, H., Loo, R. Y., & Tangonan, G. (2003). Two-Dimensional Beam Steering Using an Electrically Tunable Impedance Surface. IEEE Transactions on Antennas and Propagation, 51(10 I), 2713–2722.

Zhang, H., Zhang, X., Ma, X., Pu, M., Huang, C., Zhang, Z., Wang, Y., Guo, Y., Luo, J., &Luo, X. (2022). Full-space beam scanning based on transmission reflection switchable quadratic phase metasurface. Optics Express, 30(20), 36949.

di Renzo, M., Zappone, A., Debbah, M., Alouini, M.-S., Yuen, C., de Rosny, J., &Tretyakov, S. (2020).Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How it Works, State of Research, and Road Ahead.

Alnajjar, H., & Hameed, A. M. (n.d.). Effect of Bidirectional Reflector Technology on the Non-line-of-sight propagation of Light Fidelity System 1 st Satea

Wang, C., Xu, H. X., Wang, Y., Hu, G., Luo, H., & Wang, K. (2023). Reconfigurable transmissivemetasurface synergizing dynamic and geometric phase for versatile polarization and wavefront manipulations.Materials and Design, 225.

Jian, M., Alexandropoulos, G. C., Basar, E., Huang, C., Liu, R., Liu, Y., & Yuen, C. (2022). Reconfigurable intelligent surfaces for wireless communications: Overview of hardware designs, channel models, and estimation techniques. Intelligent and Converged Networks, 3(1), 1–32.

Yigit, Z., Basar, E., & Altunbas, I. (2022). Over-the-air beamforming with reconfigurable intelligent surfaces. Frontiers in Communications and Networks, 3.

Faisal, K. M., & Choi, W. (2022). Machine Learning Approaches for Reconfigurable Intelligent Surfaces: A Survey. IEEE Access, 10, 27343–27367.

Yuan, X., Zhang, Y.-J. A., Shi, Y., Yan, W., & Liu, H. (2020). Reconfigurable-Intelligent-Surface Empowered Wireless Communications: Challenges and Opportunities.

Liu, Y., Liu, X., Mu, X., Hou, T., Xu, J., di Renzo, M., & Al-Dhahir, N. (2020).Reconfigurable Intelligent Surfaces: Principles and Opportunities.

Sur, S. N., &Bera, R. (2021). Intelligent reflecting surface assisted MIMO communication system: A review. In Physical Communication (Vol. 47). Elsevier B.V.

Zhang, Y., Di, B., Zhang, H., Lin, J., Li, Y., & Song, L. (2020).Beyond Cell-free MIMO: Energy Efficient Reconfigurable Intelligent Surface Aided Cell-free MIMO Communications.

Dakulagi, V., & Bakhar, M. (2020). Advances in Smart Antenna Systems for Wireless Communication. In Wireless Personal Communications (Vol. 110, Issue 2, pp. 931–957). Springer. https://doi.org/10.1007/s11277-019-06764-6

Ding, Z., Zhong, C., Ng, D. W. K., Peng, M., Suraweera, H. A., Schober, R., & Poor, H. V. (2014). Application of Smart Antenna Technologies in Simultaneous Wireless Information and Power Transfer

Dai, L., Renzo, M. di, Chae, C. B., Hanzo, L., Wang, B., Wang, M., Yang, X., Tan, J., Bi, S., Xu, S., Yang, F., & Chen, Z. (2020). Reconfigurable Intelligent Surface-Based Wireless Communications: Antenna Design, Prototyping, and Experimental Results. IEEE Access, 8, 45913–45923. https://doi.org/10.1109/ACCESS.2020.2977772

Imran, M. A., Chattha, H. T., Kiourti, A., He, Y., Hashmi, R. M., Alam, M. Z., Alomainy, A., & Abbasi, Q. H. (2020). IEEE Access Special Section: Antenna and Propagation for 5G and beyond. In IEEE Access (Vol. 8, pp. 207343–207351).

Downloads

Published

2023-06-01

How to Cite

Abdulkareem, A., & H. Alnajjar, S. (2023). A Survey - Intelligent Reflecting Surface Beyond 5G. Al-Iraqia Journal for Scientific Engineering Research, 2(2), 37–44. https://doi.org/10.58564/IJSER.2.2.2023.69

Issue

Section

Articles