Machine Learning Prediction Models applied to Weather Forecasting: A survey
Keywords:
weather forecasting, Precise Forecasts, Outlying RegionsAbstract
Using scientific knowledge, weather forecasters can predict what the atmosphere will be like in a particular place. It predicts snow, cloud cover, rain, temperature and wind speed. Since weather predictions consist of multidimensional and nonlinear data, they are one of the world's most challenging problems. Various machine learning algorithms and methods have been used in data mining for weather prediction, including Support Vector Machines, supervised and unsupervised machine learning algorithms, artificial neural networks, FPGrowth Algorithms, Hadoop with Map Reduce, K-medoids, and Naive Bayes. This survey briefly explains the methods used to build weather forecasting models to assist researchers in choosing the appropriate method for their model.
References
N. Jaiswal and B. O. F. Technology, “A MACHINE LEARNING MODEL FOR WEATHER FORECASTING,” no. July, 2021.
M. ABDAKI, A. AL-IRAQI, AND R. M. FAISAL, “PREDICTING LONG-TERM CLIMATE CHANGES IN IRAQ,” IOP CONF. SER. EARTH ENVIRON. SCI., VOL. 779, NO. 1, 2021, DOI: 10.1088/1755-1315/779/1/012053.
N. GUYENNON, F. SALERNO, D. ROSSI, M. RAINALDI, E. CALIZZA, AND E. ROMANO, “CLIMATE CHANGE AND WATER ABSTRACTION IMPACTS ON THE LONG-TERM VARIABILITY OF WATER LEVELS IN LAKE BRACCIANO (CENTRAL ITALY): A RANDOM FOREST APPROACH,” J. HYDROL. REG. STUD., VOL. 37, NO. APRIL, P. 100880, 2021, DOI: 10.1016/J.EJRH.2021.100880.
S. M. M. I. DIAZ E. F. COMBARRO ET AL, “MACHINE LEARNING APPLIED TO WEATHER FORECASTING,” SPRINGER, VOL. 15, NO. 2, P. 99999, 2017.
N. ANUSHA, M. SAI CHAITHANYA, AND G. JITHENDRANATH REDDY, “WEATHER PREDICTION USING MULTI LINEAR REGRESSION ALGORITHM,” IOP CONF. SER. MATER. SCI. ENG., VOL. 590, NO. 1, 2019, DOI: 10.1088/1757-899X/590/1/012034.
K. RAMESH AND R. ANITHA, “MARSPLINE MODEL FOR LEAD SEVEN-DAY MAXIMUM AND MINIMUM AIR TEMPERATURE PREDICTION IN CHENNAI, INDIA,” J. EARTH SYST. SCI., VOL. 123, NO. 4, PP. 665–672, 2014, DOI: 10.1007/S12040-014-0434-Z.
K. U. JASEENA AND B. C. KOVOOR, DETERMINISTIC WEATHER FORECASTING MODELS BASED ON INTELLIGENT PREDICTORS: A SURVEY, VOL. 34, NO. 6. KING SAUD UNIVERSITY, 2022. DOI: 10.1016/J.JKSUCI.2020.09.009.
G. M. DHARSAN, “A SURVEY ON WEATHER FORECASTING AND THEIR TECHNIQUES,” NO. 02, PP. 12–17, 2022.
M. Q. MOHAMMED AND J. M. AL-TUWAIJARI, “A SURVEY ON VARIOUS MACHINE LEARNING APPROACHES FOR THALASSEMIA DETECTION AND CLASSIFICATION,” TURKISH J. COMPUT. …, NO. XXXX, 2021, [ONLINE]. AVAILABLE: HTTPS://TURCOMAT.ORG/INDEX.PHP/TURKBILMAT/ARTICLE/VIEW/11284%0AHTTPS://TURCOMAT.ORG/INDEX.PHP/TURKBILMAT/ARTICLE/DOWNLOAD/11284/8350
G. K. KANG, J. Z. GAO, S. CHIAO, S. LU, AND G. XIE, “AIR QUALITY PREDICTION: BIG DATA AND MACHINE LEARNING APPROACHES,” INT. J. ENVIRON. SCI. DEV., VOL. 9, NO. 1, PP. 8–16, 2018, DOI: 10.18178/IJESD.2018.9.1.1066.
C. K. , ET. AL., “PREDICTION OF CLIMATE CHANGE USING SVM AND NAÏVE BAYES MACHINE LEARNING ALGORITHMS,” TURKISH J. COMPUT. MATH. EDUC., VOL. 12, NO. 2, PP. 2134–2139, 2021, DOI: 10.17762/TURCOMAT.V12I2.1856.
F. OLAIYA AND A. B. ADEYEMO, “APPLICATION OF DATA MINING TECHNIQUES IN WEATHER PREDICTION AND CLIMATE CHANGE STUDIES,” INT. J. INF. ENG. ELECTRON. BUS., VOL. 4, NO. 1, PP. 51–59, 2012, DOI: 10.5815/IJIEEB.2012.01.07.
A. WUNSCH, T. LIESCH, AND S. BRODA, “DEEP LEARNING SHOWS DECLINING GROUNDWATER LEVELS IN GERMANY UNTIL 2100 DUE TO CLIMATE CHANGE,” NAT. COMMUN., VOL. 13, NO. 1, PP. 1–13, 2022, DOI: 10.1038/S41467-022-28770-2.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Israa Jasim Mohmmed, Bashar Talib AL-Nuaimi , Asst . Prof. Dr. Dher Intisar Bakr Intisar Bakr
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.