Recent Advances in Iridology based Disease Detection: A Comprehensive Review
DOI:
https://doi.org/10.58564/IJSER.4.1.2025.291Keywords:
Iridology, Disease, Region of Interest (ROI), Artificial Intelligence (AI), Machine Learning (ML)Abstract
The increasing demand for non-invasive, rapid, and cost-effective disease diagnostics has driven advancements in integrating Iridology with computer vision and Artificial Intelligence (AI). This review examines research conducted from 2009 to 2024 on iris-based disease detection. The key findings showed the significant role of Machine Learning (ML) and Deep Learning (DL) in enhancing diagnostic accuracy and efficiency. Iridology-based intelligent systems show great promise for early detection of hidden diseases and organ dysfunctions, offering transformative potential for healthcare.
References
[1] S. P. Jogi and B. B. Sharma, “Retracted: Methodology of iris image analysis for clinical diagnosis,” in 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), IEEE, Nov. 2014, pp. 235–240. doi: 10.1109/MedCom.2014.7006010.
[2] C. Banowati, A. Novianty, and C. Setianingsih, “Cholesterol Level Detection Based on Iris Recognition Using Convolutional Neural Network Method,” in 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), IEEE, Nov. 2019, pp. 116–121. doi: 10.1109/CSUDET47057.2019.9214690.
[3] Z. Othman and A. Satria Prabuwono, “Retracted: Preliminary study on iris recognition system: Tissues of body organs in iridology,” in 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), IEEE, Nov. 2010, pp. 115–119. doi: 10.1109/IECBES.2010.5742211.
[4] R. A. Ramlee and S. Ranjit, “Retracted: Using Iris Recognition Algorithm, Detecting Cholesterol Presence,” in 2009 International Conference on Information Management and Engineering, IEEE, Apr. 2009, pp. 714–717. doi: 10.1109/ICIME.2009.61.
[5] T. Hussain et al., “Retracted: An Iris based Lungs Pre-diagnostic System,” in 2019 2nd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), IEEE, Jan. 2019, pp. 1–5. doi: 10.1109/ICOMET.2019.8673495.
[6] A. Bansal, R. Agarwal, and R. K. Sharma, “Pre-Diagnostic Tool to Predict Obstructive Lung Diseases Using Iris Recognition System,” 2019, pp. 71–79. doi: 10.1007/978-981-10-8968-8_7.
[7] C.-L. Lai and C.-L. Chiu, “Retracted: Health examination based on iris images,” in 2010 International Conference on Machine Learning and Cybernetics, IEEE, Jul. 2010, pp. 2616–2621. doi: 10.1109/ICMLC.2010.5580885.
[8] F. Hidayanti, H. Hadi Santoso, and H. Endo Prasetyo, “Upper Stomach Disorder Detection System using Back-propagation Artificial Neural Network,” International Journal of Emerging Trends in Engineering Research, vol. 8, no. 8, pp. 4426–4432, Aug. 2020, doi: 10.30534/ijeter/2020/62882020.
[9] K. Sivasankar, M. Sujaritha, P. Pasupathi, and S. Muthukumar, “Retracted: FCM based iris image analysis for tissue imbalance stage identification,” in 2012 International Conference on Emerging Trends in Science, Engineering and Technology (INCOSET), IEEE, Dec. 2012, pp. 210–215. doi: 10.1109/INCOSET.2012.6513907.
[10] S. E. Hussein, O. A. Hassan, and M. H. Granat, “Assessment of the potential iridology for diagnosing kidney disease using wavelet analysis and neural networks,” Biomed Signal Process Control, vol. 8, no. 6, pp. 534–541, Nov. 2013, doi: 10.1016/j.bspc.2013.04.006.
[11] L. F. Salles and M. J. P. da Silva, “The sign of the Cross of Andreas in the iris and Diabetes Mellitus: a longitudinal study,” Revista da Escola de Enfermagem da USP, vol. 49, no. 4, pp. 0626–0631, Aug. 2015, doi: 10.1590/S0080-623420150000400013.
[12] Y.-H. Li, M. S. Aslam, K.-L. Yang, C.-A. Kao, and S.-Y. Teng, “Classification of Body Constitution Based on TCM Philosophy and Deep Learning,” Symmetry (Basel), vol. 12, no. 5, p. 803, May 2020, doi: 10.3390/sym12050803.
[13] D. H. Hareva, S. Lukas, and N. O. Suharta, “Retracted: The smart device for healthcare service: Iris diagnosis application,” in 2013 Eleventh International Conference on ICT and Knowledge Engineering, IEEE, Nov. 2013, pp. 1–6. doi: 10.1109/ICTKE.2013.6756277.
[14] A. Bansal, R. Agarwal, and R. K. Sharma, “Determining diabetes using iris recognition system,” Int J Diabetes Dev Ctries, vol. 35, no. 4, pp. 432–438, Dec. 2015, doi: 10.1007/s13410-015-0296-1.
[15] M. A. R. Sitorus, M. H. Purnomo, and A. D. Wibawa, “Retracted: Iris image analysis of patient Chronic Renal Failure (CRF) using watershed algorithm,” in 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), IEEE, Nov. 2015, pp. 54–58. doi: 10.1109/ICICI-BME.2015.7401334.
[16] K. E. Martiana, A. R. Barakbah, S. S. Akmilis, and A. A. Hermawan, “Retracted: Application for heart abnormalities detection through Iris,” in 2016 International Electronics Symposium (IES), IEEE, Sep. 2016, pp. 315–322. doi: 10.1109/ELECSYM.2016.7861024.
[17] P. Samant and R. Agarwal, “Diagnosis of Diabetes Using Computer Methods: Soft Computing Methods for Diabetes Detection Using Iris,” International Journal of Medical, Health, Biomedical, Bioengineering and Pharmaceutical Engineering, vol. 11, no. 2, pp. 63–68, 2017, doi: 10.5281/zenodo.1129721.
[18] P. Samant and R. Agarwal, “Machine learning techniques for medical diagnosis of diabetes using iris images,” Comput Methods Programs Biomed, vol. 157, pp. 121–128, Apr. 2018, doi: 10.1016/j.cmpb.2018.01.004.
[19] P. Moradi, N. Nazer, A. K. Ahmadi, H. Mohammadzade, and H. K. Jafari, “Retracted: Discovering Informative Regions in Iris Images to Predict Diabetes,” in 2018 25th National and 3rd International Iranian Conference on Biomedical Engineering (ICBME), IEEE, Nov. 2018, pp. 1–6. doi: 10.1109/ICBME.2018.8703564.
[20] P. Samant and R. Agarwal, “Analysis of computational techniques for diabetes diagnosis using the combination of iris-based features and physiological parameters,” Neural Comput Appl, vol. 31, no. 12, pp. 8441–8453, Dec. 2019, doi: 10.1007/s00521-019-04551-9.
[21] P. A. Reshma, K. V. Divya, and T. B. Subair, “Detection of Heart Abnormalities and High-Level Cholesterol Through Iris,” 2019, pp. 339–346. doi: 10.1007/978-3-030-00665-5_35.
[22] L. B. Rachman and Basari, “Detection of Cholesterol Levels by Analyzing Iris Patterns using Back-propagation Neural Network,” IOP Conf Ser Mater Sci Eng, vol. 852, no. 1, p. 012157, Jul. 2020, doi: 10.1088/1757-899X/852/1/012157.
[23] S. Muzamil, T. Hussain, A. Haider, U. Waraich, U. Ashiq, and E. Ayguadé, “An Intelligent Iris Based Chronic Kidney Identification System,” Symmetry (Basel), vol. 12, no. 12, p. 2066, Dec. 2020, doi: 10.3390/sym12122066.
[24] C. Yohannes, I. Nurtanio, and K. C. Halim, “Potential of Heart Disease Detection Based on Iridology,” IOP Conf Ser Mater Sci Eng, vol. 875, no. 1, p. 012034, Jun. 2020, doi: 10.1088/1757-899X/875/1/012034.
[25] H. A. U. Rehman, C. Y. Lin, and S. F. Su, “Deep learning based chronic kidney disease detection through iris,” J Phys Conf Ser, vol. 2020, no. 1, p. 012047, Sep. 2021, doi: 10.1088/1742-6596/2020/1/012047.
[26] E. M. Kusumaningtyas, A. Barakbah, and S. Danggriawan, “Diabetes and Heart Disease Identification System Using Iris on the Healthcare Kiosk,” J Phys Conf Ser, vol. 1811, no. 1, p. 012096, Mar. 2021, doi: 10.1088/1742-6596/1811/1/012096.
[27] S. K. Punia, M. Kumar, S. K. Pathak, and X. Cheng, “Diabetes and heart disease identification using biomedical iris data,” Applied and Computational Engineering, vol. 2, no. 1, pp. 336–345, Mar. 2023, doi: 10.54254/2755-2721/2/20220676.
[28] F. Özbilgin, Ç. Kurnaz, and E. Aydın, “Prediction of Coronary Artery Disease Using Machine Learning Techniques with Iris Analysis,” Diagnostics, vol. 13, no. 6, p. 1081, Mar. 2023, doi: 10.3390/diagnostics13061081.
[29] S. J. Wagh, “WFL Publisher Android mobile application for heart abnormality disease detection through human iris,” 2023, doi: 10.1234/4.2023.5749.
[30] C. Fernandez-Grandon, I. Soto, and D. Zabala-Blanco, “Extreme Learning Machine for Iris-Based Diabetes Detection,” in 2023 IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), IEEE, Dec. 2023, pp. 1–6. doi: 10.1109/CHILECON60335.2023.10418742.
[31] M. Jawad Kathem and T. Salman Atia, “A Review on IoT Cyber-Attacks Detection Challenges and Solutions,” Al-Iraqia Journal of Scientific Engineering Research, vol. 2, no. 3, pp. 22–31, Aug. 2023, doi: 10.58564/IJSER.2.3.2023.84.
[32] E. Najjar and A. Majeed Breesam, “Supervised Machine Learning a Brief Survey of Approaches,” Al-Iraqia Journal of Scientific Engineering Research, vol. 2, no. 4, pp. 71–82, Jan. 2024, doi: 10.58564/IJSER.2.4.2023.121.
[33] A. Mubashra, A. Naeem, Dr. N. Aslam, M. K. Abid, and J. Haider, “Diabetic Retinopathy Identification from Eye Fundus images using Deep Features,” VFAST Transactions on Software Engineering, vol. 11, no. 2, pp. 172–186, Jun. 2023, doi: 10.21015/vtse.v11i2.1206.
[34] H. Gu, Y. Wang, S. Hong, and G. Gui, “Blind Channel Identification Aided Generalized Automatic Modulation Recognition Based on Deep Learning,” IEEE Access, vol. 7, pp. 110722–110729, 2019, doi: 10.1109/ACCESS.2019.2934354.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alaa Abdulkareem Ahmed, Mohammad Tariq Yaseen

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.