A Systematic Review of Adversarial Machine Learning and Deep Learning Applications
DOI:
https://doi.org/10.58564/IJSER.3.4.2024.275Keywords:
Robotics, Adversarial Attack, Security, Artificial Intelligence, Machine Learning, Deep LearningAbstract
The review delves into creating an understandable framework for machine learning in robotics. It stresses the significance of machine learning in materials science and robotics highlighting how it can transform industries by boosting efficiency and deepening our knowledge of materials on levels. The review also discusses the hurdles posed by attacks on machine learning and the increasing relevance of machine learning in software development. It outlines the approach used in the review, including the search strategy criteria for inclusion and exclusion and the process for selecting studies, including adherence to research published in English only. The classification section organizes the chosen studies into six areas: reinforcement learning, adversarial techniques, applications of learning, and image recognition. In the Discussion section, challenges like critical learning models in robotics unsupervised learning, adversarial attacks on datasets, and limited data for polyp detection are identified. Recommendations for research are provided along with insights into motivations behind these studies; topics covered include reinforcement learning, adversarial examples, domain alignment, and world adversarial attacks on industrial systems.
References
X. Liu, S. Tian, F. Tao, and W. Yu, “A review of artificial neural networks in the constitutive modeling of composite materials,” Composites Part B: Engineering, vol. 224. 2021. doi:10.1016/j.compositesb.2021.109152. DOI: https://doi.org/10.1016/j.compositesb.2021.109152
L. Fiedler, K. Shah, M. Bussmann, and A. Cangi, “Deep dive into machine learning density functional theory for materials science and chemistry,” Phys Rev Mater, vol. 6, no. 4, 2022, doi:10.1103/PhysRevMaterials.6.040301. DOI: https://doi.org/10.1103/PhysRevMaterials.6.040301
J. Qin et al., “Research and application of machine learning for additive manufacturing,” Additive Manufacturing, vol. 52. 2022. doi:10.1016/j.addma.2022.102691. DOI: https://doi.org/10.1016/j.addma.2022.102691
S. Geng, Q. Luo, K. Liu, Y. Li, Y. Hou, and W. Long, “Research status and prospect of machine learning in construction 3D printing,” Case Studies in Construction Materials, vol. 18, 2023, doi:10.1016/j.cscm.2023.e01952. DOI: https://doi.org/10.1016/j.cscm.2023.e01952
L. Farahzadi and M. Kioumarsi, “Application of machine learning initiatives and intelligent perspectives for CO2 emissions reduction in construction,” Journal of Cleaner Production, vol. 384. 2023. doi: 10.1016/j.jclepro.2022.135504. DOI: https://doi.org/10.1016/j.jclepro.2022.135504
K. J. DeMille and A. D. Spear, “Convolutional neural networks for expediting the determination of minimum volume requirements for studies of microstructurally small cracks, Part I: Model implementation and predictions,” Comput Mater Sci, vol. 207, 2022, doi: 10.1016/j.commatsci.2022.111290. DOI: https://doi.org/10.1016/j.commatsci.2022.111290
Y. Wang et al., “Mining structure-property relationships in polymer nanocomposites using data driven finite element analysis and multi-task convolutional neural networks,” Mol Syst Des Eng, vol. 5, no. 5, 2020, doi: 10.1039/d0me00020e. DOI: https://doi.org/10.1039/D0ME00020E
A. Benayad et al., “High-Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research,” Advanced Energy Materials, vol. 12, no. 17. 2022. doi: 10.1002/aenm.202102678. DOI: https://doi.org/10.1002/aenm.202102678
G. C. Vosniakos, P. Avrampos, and T. Mitropoulos, “Determining favourable process parameters in Computer Numerically Controlled polishing of metal surfaces,” International Journal of Manufacturing Research, vol. 17, no. 3, 2022, doi: 10.1504/ijmr.2022.10036086. DOI: https://doi.org/10.1504/IJMR.2022.10036086
L. Chen, R. Liu, and X. Shi, “General principles of thermoelectric technology,” in Thermoelectric Materials and Devices, 2021. doi: 10.1016/b978-0-12-818413-4.00001-6. DOI: https://doi.org/10.1016/B978-0-12-818413-4.00001-6
M. Bartoš, V. Bulej, M. Bohušík, J. Stancek, V. Ivanov, and P. Macek, “An overview of robot applications in automotive industry,” in Transportation Research Procedia, 2021. doi: 10.1016/j.trpro.2021.07.052. DOI: https://doi.org/10.1016/j.trpro.2021.07.052
M. Javaid, A. Haleem, R. P. Singh, S. Rab, and R. Suman, “Significant applications of Cobots in the field of manufacturing,” Cognitive Robotics, vol. 2, 2022, doi: 10.1016/j.cogr.2022.10.001. DOI: https://doi.org/10.1016/j.cogr.2022.10.001
B. I. Sighencea, R. I. Stanciu, and C. D. Căleanu, “A review of deep learning-based methods for pedestrian trajectory prediction,” Sensors, vol. 21, no. 22. 2021. doi: 10.3390/s21227543. DOI: https://doi.org/10.3390/s21227543
I. Fassi, S. Pio Negri, C. Pagano, L. Rebaioli, and M. Valori, “Robots Industriales 4.0,” in Fabricación digital para pymes, 2020.
A. F. Brumovsky, V. M. Liste, and M. Anigstein, “Implementación de control de fuerzas en robots industriales: un caso,” IV JornadasArgentinas de Robótica, JAR08. Córdoba, no. 1986, 2006.
J. Sanz, “ROBOTS INDUSTRIALES COLABORATIVOS : Una nueva forma de trabajo,” Segurdad y saludeneltrabajo, vol. 95, 2018.
S. Qiu, Q. Liu, S. Zhou, and C. Wu, “Review of artificial intelligence adversarial attack and defense technologies,” Applied Sciences (Switzerland), vol. 9, no. 5. 2019. doi: 10.3390/app9050909. DOI: https://doi.org/10.3390/app9050909
S. Qiu, Q. Liu, S. Zhou, and W. Huang, “Adversarial attack and defense technologies in natural language processing: A survey,” Neurocomputing, vol. 492. 2022. doi: 10.1016/j.neucom.2022.04.020. DOI: https://doi.org/10.1016/j.neucom.2022.04.020
B. B. Madan, M. Banik, and D. Bein, “Securing unmanned autonomous systems from cyber threats,” Journal of Defense Modeling and Simulation, vol. 16, no. 2, 2019, doi: 10.1177/1548512916628335. DOI: https://doi.org/10.1177/1548512916628335
S. K. Jagatheesaperumal, M. Rahouti, K. Ahmad, A. Al-Fuqaha, and M. Guizani, “The Duo of Artificial Intelligence and Big Data for Industry 4.0: Applications, Techniques, Challenges, and Future Research Directions,” IEEE Internet Things J, vol. 9, no. 15, 2022, doi: 10.1109/JIOT.2021.3139827. DOI: https://doi.org/10.1109/JIOT.2021.3139827
M. T. West, S. M. Erfani, C. Leckie, M. Sevior, L. C. L. Hollenberg, and M. Usman, “Benchmarking adversarially robust quantum machine learning at scale,” Phys Rev Res, vol. 5, no. 2, 2023, doi: 10.1103/PhysRevResearch.5.023186. DOI: https://doi.org/10.1103/PhysRevResearch.5.023186
X. Gao, C. Zhou, F. Chao, L. Yang, C. M. Lin, and C. Shang, “A Robotic Writing Framework-Learning Human Aesthetic Preferences via Human-Machine Interactions,” IEEE Access, vol. 7, 2019, doi: 10.1109/ACCESS.2019.2944912.
X. Wang, S. Nair, and M. Althoff, “Falsification-Based Robust Adversarial Reinforcement Learning,” in Proceedings - 19th IEEE International Conference on Machine Learning and Applications, ICMLA 2020, 2020. doi: 10.1109/ICMLA51294.2020.00042. DOI: https://doi.org/10.1109/ICMLA51294.2020.00042
M. Espinós Longa, A. Tsourdos, and G. Inalhan, “Swarm Intelligence in Cooperative Environments: n-Step Dynamic Tree Search Algorithm Overview,” Journal of Aerospace Information Systems, vol. 20, no. 7, 2023, doi: 10.2514/1.I011086. DOI: https://doi.org/10.2514/1.I011086
N. Freymuth, P. Dahlinger, T. Würth, S. Reisch, L. Kärger, and G. Neumann, “Swarm Reinforcement Learning for Adaptive Mesh Refinement.” [Online]. Available: https://github.com/NiklasFreymuth/ASMR.
H. Zhu, M. Chen, Z. Han, and M. Lungu, “Inverse Reinforcement Learning-Based Fire-Control Command Calculation of an Unmanned Autonomous Helicopter Using Swarm Intelligence Demonstration,” Aerospace, vol. 10, no. 3, Mar. 2023, doi: 10.3390/aerospace10030309. DOI: https://doi.org/10.3390/aerospace10030309
J. Wei and Q. Meng, “AdversarialStyle: GAN Based Style Guided Verification Framework for Deep Learning Systems,” in IEEE International Conference on Industrial Informatics (INDIN), Institute of Electrical and Electronics Engineers Inc., Jul. 2020, pp. 641–648. doi: 10.1109/INDIN45582.2020.9442144. DOI: https://doi.org/10.1109/INDIN45582.2020.9442144
S. Afaq, A. Shah, M. Bougre, N. Akhtar, M. Bennamoun, and L. Zhang, “EFFICIENT DETECTION OF PIXEL-LEVEL ADVERSARIAL ATTACKS,” 2020.
M. Wulfmeier, A. Bewley, and I. Posner, “Addressing Appearance Change in Outdoor Robotics with Adversarial Domain Adaptation.”
Y. Jia, C. M. Poskitt, J. Sun, and S. Chattopadhyay, “Physical Adversarial Attack on a Robotic Arm,” IEEE Robot Autom Lett, vol. 7, no. 4, pp. 9334–9341, Oct. 2022, doi: 10.1109/LRA.2022.3189783. DOI: https://doi.org/10.1109/LRA.2022.3189783
H. Suryotrisongko, Y. Musashi, A. Tsuneda, and K. Sugitani, “Adversarial Robustness in Hybrid Quantum-Classical Deep Learning for Botnet DGA Detection,” Journal of Information Processing, vol. 30, pp. 636–644, 2022, doi: 10.2197/IPSJJIP.30.636. DOI: https://doi.org/10.2197/ipsjjip.30.636
K. Ohashi, K. Nakanishi, W. Sasaki, Y. Yasui, and S. Ishii, “Deep Adversarial Reinforcement Learning with Noise Compensation by Autoencoder,” IEEE Access, vol. 9, pp. 143901–143912, 2021, doi: 10.1109/ACCESS.2021.3121751. DOI: https://doi.org/10.1109/ACCESS.2021.3121751
H. Zhang et al., “Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations.” [Online]. Available: https://github.com/chenhongge/StateAdvDRL.
L. Zhang, S. Lambotharan, G. Zheng, G. Liao, A. Demontis, and F. Roli, “A Hybrid Training-time and Run-time Defense Against Adversarial Attacks in Modulation Classification.”
J. H. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge, “Excessive invariance causes adversarial vulnerability,” in 7th International Conference on Learning Representations, ICLR 2019, International Conference on Learning Representations, ICLR, 2019.
S. Zhao, X. Wang, and X. Wei, “Mitigating the Accuracy-Robustness Trade-off via Multi-Teacher Adversarial Distillation.”
A. Chen, P. Lorenz, Y. Yao, P.-Y. Chen, and S. Liu, “VISUAL PROMPTING FOR ADVERSARIAL ROBUSTNESS.” [Online]. Available: https://github.com/Phoveran/vp-for-adversarial-robustness.
M. K. Ahuja, A. Gotlieb, and H. Spieker, “Testing Deep Learning Models: A First Comparative Study of Multiple Testing Techniques,” in Proceedings - 2022 IEEE 14th International Conference on Software Testing, Verification and Validation Workshops, ICSTW 2022, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 130–137. doi: 10.1109/ICSTW55395.2022.00035. DOI: https://doi.org/10.1109/ICSTW55395.2022.00035
O. A. Alkhudaydi, M. Krichen, and A. D. Alghamdi, “A Deep Learning Methodology for Predicting Cybersecurity Attacks on the Internet of Things,” Information (Switzerland), vol. 14, no. 10, Oct. 2023, doi: 10.3390/info14100550. DOI: https://doi.org/10.3390/info14100550
A. Ramy and N. Barakat, “Sketch to Image Using Generative Adversarial Networks (GAN),” The British University in Egypt, pp. 1–46, 2022.
X. Zuo, X. Yang, Z. Dou, and J. R. Wen, “RUCIR at TREC 2019: Conversational Assistance Track,” in 28th Text REtrieval Conference, TREC 2019 - Proceedings, National Institute of Standards and Technology (NIST), 2019. doi: 10.1145/1122445.1122456.
F. Azhari, C. C. Sennersten, C. A. Lindley, and E. Sellers, “Deep learning implementations in mining applications: a compact critical review,” ArtifIntell Rev, vol. 56, no. 12, pp. 14367–14402, Dec. 2023, doi: 10.1007/s10462-023-10500-9. DOI: https://doi.org/10.1007/s10462-023-10500-9
G. Farjon, L. Huijun, and Y. Edan, “Deep-Learning-based Counting Methods, Datasets, and Applications in Agriculture-A Review.”
Y. Tang, “Frontiers in Computing and Intelligent Systems Deep learning in drug discovery: applications and limitations,” vol. 3, no. 2, p. 2023. DOI: https://doi.org/10.54097/fcis.v3i2.7575
S. F. Ahmed et al., “Deep learning modelling techniques: current progress, applications, advantages, and challenges,” ArtifIntell Rev, vol. 56, no. 11, pp. 13521–13617, Nov. 2023, doi: 10.1007/s10462-023-10466-8. DOI: https://doi.org/10.1007/s10462-023-10466-8
E. Farshi, “Hybrid Quantum-Classical Approach: Quantum-Inspired Deep Learning Using Classical Simulation,” 2023, doi: 10.21203/rs.3.rs-3021644/v1. DOI: https://doi.org/10.21203/rs.3.rs-3021644/v1
A. Barchielli and R. F. Werner, “Hybrid quantum-classical systems: Quasi-free Markovian dynamics,” 2023. DOI: https://doi.org/10.1142/S0219749924400021
F. Gay-Balmaz and C. Tronci, “Fluid models of mixed quantum-classical dynamics,” 2023. DOI: https://doi.org/10.1007/s00332-024-10044-4
A. Tolstobrov et al., “Hybrid quantum learning with data re-uploading on a small-scale superconducting quantum simulator.”
T. Zhang, J. Wang, and M. Q-H Meng, “Generative Adversarial Network based Heuristics for Sampling-based Path Planning.”
J. O. Jimenez and W. Suleiman, “Improving Path Planning Performance through Multimodal Generative Models with Local Critics,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.09470
A. Sagar and S. T. Gilukara, “CBAGAN-RRT: Convolutional Block Attention Generative Adversarial Network for Sampling-Based Path Planning,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.10442
J. Tan, “A Method to Plan the Path of a Robot Utilizing Deep Reinforcement Learning and Multi-Sensory Information Fusion,” Applied Artificial Intelligence, vol. 37, no. 1, 2023, doi: 10.1080/08839514.2023.2224996. DOI: https://doi.org/10.1080/08839514.2023.2224996
Y. Zhu, “Using neural networks to explore path planning algorithms for robots,” Applied and Computational Engineering, vol. 5, no. 1, pp. 566–572, Jun. 2023, doi: 10.54254/2755-2721/5/20230645. DOI: https://doi.org/10.54254/2755-2721/5/20230645
J. de la Torre, “REDES GENERATIVAS ADVERSARIAS (GAN) FUNDAMENTOS TEÓRICOS Y APLICACIONES SURVEY,” 2023.
J. Yu, Z. Shen, and X. Zheng, “Joint Feature and Label Adversarial Network for Wafer Map Defect Recognition,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 3, pp. 1341–1353, Jul. 2021, doi: 10.1109/TASE.2020.3003124. DOI: https://doi.org/10.1109/TASE.2020.3003124
Y. Wang, T. Li, S. Li, X. Yuan, and W. Ni, “New Adversarial Image Detection Based on Sentiment Analysis,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.03173
C. Wang, S. Qi, Z. Huang, Y. Zhang, R. Lan, and X. Cao, “Towards an Accurate and Secure Detector against Adversarial Perturbations,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.10856
R. Kaur, Y. Kantaros, W. Si, J. Weimer, and I. Lee, “Detection of Adversarial Physical Attacks in Time-Series Image Data,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.13919
F. Nesti, A. Biondi, and G. Buttazzo, “Detecting Adversarial Examples by Input Transformations, Defense Perturbations, and Voting,” Jan. 2021, doi: 10.1109/TNNLS.2021.3105238. DOI: https://doi.org/10.1109/TNNLS.2021.3105238
Y. Xiao, C. Wang, and X. Gao, “Unsupervised Multi-Criteria Adversarial Detection in Deep Image Retrieval,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.04228
V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms.”
L. A. Gatys, A. S. Ecker, and M. Bethge, “Image Style Transfer Using Convolutional Neural Networks.”
I. J. Goodfellow, J. Shlens, and C. Szegedy, “EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES.” [Online]. Available: https://github.com/lisa-lab/pylearn2/tree/master/pylearn2/scripts/
O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” May 2015, [Online]. Available: http://arxiv.org/abs/1505.04597 DOI: https://doi.org/10.1007/978-3-319-24574-4_28
J. Chen, R. Zhang, Z. Luo, C. Hu, and Y. Mao, “Adversarial Word Dilution as Text Data Augmentation in Low-Resource Regime,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i11.26486
A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards Deep Learning Models Resistant to Adversarial Attacks,” Jun. 2017, [Online]. Available: http://arxiv.org/abs/1706.06083
E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial Discriminative Domain Adaptation.”
F. Ayaz et al., “Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.12829 DOI: https://doi.org/10.1109/IJCNN54540.2023.10191429
K. Venkatesh Vishwanath and A. Vahdat, “Swing: Realistic and Responsive Network Traffic Generation.”
J. Zhang, J. Sang, Q. Yi, Y. Yang, H. Dong, and J. Yu, “ImageNet Pre-training Also Transfers Non-robustness,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i3.25452
R. Iqbal, A. Behjat, R. Adlakha, J. Callanan, M. Nouh, and S. Chowdhury, “Efficient Training of Transfer Mapping in Physics-Infused Machine Learning Models of UAV Acoustic Field,” Jan. 2022, [Online]. Available: http://arxiv.org/abs/2201.06090 DOI: https://doi.org/10.2514/6.2022-0384
A. Mohan, A. Zhang, and M. Lindauer, “Structure in Reinforcement Learning: A Survey and Open Problems,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.16021
F. Jarboui and A. Akakzia, “Delayed Geometric Discounts: An Alternative Criterion for Reinforcement Learning,” Sep. 2022, [Online]. Available: http://arxiv.org/abs/2209.12483
R. Deffayet, T. Thonet, J.-M. Renders, and M. de Rijke, “Offline Evaluation for Reinforcement Learning-based Recommendation: A Critical Issue and Some Alternatives,” Jan. 2023, [Online]. Available: http://arxiv.org/abs/2301.00993
A. Goyal et al., “Retrieval-Augmented Reinforcement Learning,” Feb. 2022, [Online]. Available: http://arxiv.org/abs/2202.08417
C. Wan and F. Huang, “Adversarial Attack Based on Prediction-Correction,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.01809
J. Wang, H. Wu, H. Wang, J. Zhang, X. Luo, and B. Ma, “Immune Defense: A Novel Adversarial Defense Mechanism for Preventing the Generation of Adversarial Examples,” Mar. 2023, [Online]. Available: http://arxiv.org/abs/2303.04502
L. Zhang, N. Yang, Y. Sun, and P. S. Yu, “Provable Unrestricted Adversarial Training without Compromise with Generalizability,” Jan. 2023, [Online]. Available: http://arxiv.org/abs/2301.09069
H. Xu et al., “Towards Generating Adversarial Examples on Mixed-type Data,” Oct. 2022, [Online]. Available: http://arxiv.org/abs/2210.09405
S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic Similarity Metrics for Evaluating Source Code Summarization,” in IEEE International Conference on Program Comprehension, IEEE Computer Society, 2022, pp. 36–47. doi: 10.1145/nnnnnnn.nnnnnnn. DOI: https://doi.org/10.1145/3524610.3527909
W. Deng, L. Zheng, and J. Jiao, “Domain Alignment with Triplets,” Dec. 2018, [Online]. Available: http://arxiv.org/abs/1812.00893
A. Kumar et al., “Co-regularized Alignment for Unsupervised Domain Adaptation,” Nov. 2018, [Online]. Available: http://arxiv.org/abs/1811.05443
A. Kumar et al., “Co-regularized Alignment for Unsupervised Domain Adaptation,” Nov. 2018, [Online]. Available: http://arxiv.org/abs/1811.05443
N. Berthier, Y. Sun, W. Huang, Y. Zhang, W. Ruan, and X. Huang, “Tutorials on Testing Neural Networks,” Aug. 2021, [Online]. Available: http://arxiv.org/abs/2108.01734
Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang, “Large Language Models are Edge-Case Fuzzers: Testing Deep Learning Libraries via FuzzGPT,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.02014 DOI: https://doi.org/10.1145/3597926.3598067
X. Zuo, X. Yang, Z. Dou, and J. R. Wen, “RUCIR at TREC 2019: Conversational Assistance Track,” in 28th Text REtrieval Conference, TREC 2019 - Proceedings, National Institute of Standards and Technology (NIST), 2019. doi: 10.1145/1122445.1122456. DOI: https://doi.org/10.6028/NIST.SP.1250.cast-RUCIR
Y. Tu, S. Rampazzi, and X. Hei, “Towards Adversarial Control Loops in Sensor Attacks: A Case Study to Control the Kinematics and Actuation of Embedded Systems,” Mar. 2022, [Online]. Available: http://arxiv.org/abs/2203.07670
O. Gungor, T. Rosing, and B. Aksanli, “Adversarial-HD: Hyperdimensional Computing Adversarial Attack Design for Secure Industrial Internet of Things,” in ACM International Conference Proceeding Series, Association for Computing Machinery, May 2023, pp. 1–6. doi: 10.1145/3576914.3587484.
H. Han et al., “Real-Time Robust Video Object Detection System Against Physical-World Adversarial Attacks,” Aug. 2022, [Online]. Available: http://arxiv.org/abs/2208.09195
S. Park, D. Hwang, D. Student, and T. Maxine Goodman Levin, “An Analysis of Policy Satisfaction Using the Expectancy Disconfirmation Model*,” 2010. DOI: https://doi.org/10.52372/kjps25303
F. Nurhayati, D. Marniati, T. Farisni, and D. Nabela, “Relationship Physical Aspect and Policy Nerve Inpatient Service With Patient Satisfaction at Cut Nyak Dhien Regional General Hospital Aceh Barat Regency,” The Indonesian Journal of Public Health), vol. 9, no. 2, pp. 40–44, 2022, doi: 10.35308/j-kesmas.v7i2.5044. DOI: https://doi.org/10.35308/j-kesmas.v9i2.5044
M. Jamoos, A. M. Mora, M. AlKhanafseh, and O. Surakhi, “A New Data-Balancing Approach Based on Generative Adversarial Network for Network Intrusion Detection System,” Electronics (Switzerland), vol. 12, no. 13, Jul. 2023, doi: 10.3390/electronics12132851. DOI: https://doi.org/10.3390/electronics12132851
A. S. Barkah, S. R. Selamat, Z. Z. Abidin, and R. Wahyudi, “Data Generative Model to Detect the Anomalies for IDS Imbalance CICIDS2017 Dataset,” TEM Journal, vol. 12, no. 1, pp. 80–89, Feb. 2023, doi: 10.18421/TEM121-11. DOI: https://doi.org/10.18421/TEM121-11
N. Zhu, G. Zhao, Y. Yang, H. Yang, and Z. Liu, “AEC_GAN: Unbalanced Data Processing Decision-Making in Network Attacks Based on ACGAN and Machine Learning,” IEEE Access, vol. 11, pp. 52452–52465, 2023, doi: 10.1109/ACCESS.2023.3280421. DOI: https://doi.org/10.1109/ACCESS.2023.3280421
A. Cano and B. Krawczyk, “ROSE: robust online self-adjusting ensemble for continual learning on imbalanced drifting data streams,” Mach Learn, vol. 111, no. 7, pp. 2561–2599, Jul. 2022, doi: 10.1007/s10994-022-06168-x. DOI: https://doi.org/10.1007/s10994-022-06168-x
R. Almarshdi, L. Nassef, E. Fadel, and N. Alowidi, “Hybrid Deep Learning Based Attack Detection for Imbalanced Data Classification,” Intelligent Automation and Soft Computing, vol. 35, no. 1, pp. 297–320, 2023, doi: 10.32604/iasc.2023.026799. DOI: https://doi.org/10.32604/iasc.2023.026799
B. Xing, X. Ying, R. Wang, J. Yang, and T. Chen, “Cross-Modal Contrastive Learning for Domain Adaptation in 3D Semantic Segmentation,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i3.25400
Y. Liao, W. Zhou, X. Yan, Z. Li, Y. Yu, and S. Cui, “Geometry-Aware Network for Domain Adaptive Semantic Segmentation,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i7.26053
B. Zhang, Z. Wang, Y. Ling, Y. Guan, S. Zhang, and W. Li, “Mx2M: Masked Cross-Modality Modeling in Domain Adaptation for 3D Semantic Segmentation,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i3.25448
A. Cardace, P. Z. Ramirez, S. Salti, and L. Di Stefano, “Exploiting the Complementarity of 2D and 3D Networks to Address Domain-Shift in 3D Semantic Segmentation,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.02991 DOI: https://doi.org/10.1109/CVPRW59228.2023.00015
Z. Wu et al., “Object Segmentation by Mining Cross-Modal Semantics,” in MM 2023 - Proceedings of the 31st ACM International Conference on Multimedia, Association for Computing Machinery, Inc, Oct. 2023, pp. 3455–3464. doi: 10.1145/3581783.3611970. DOI: https://doi.org/10.1145/3581783.3611970
S. Yang, M. Dong, Y. Wang, and C. Xu, “Adversarial Recurrent Time Series Imputation.”
Z. Xiong, J. Eappen, H. Zhu, and S. Jagannathan, “Defending Observation Attacks in Deep Reinforcement Learning via Detection and Denoising,” Jun. 2022, [Online]. Available: http://arxiv.org/abs/2206.07188
K. Tan, J. Wang, and Y. Kantaros, “Targeted Adversarial Attacks against Neural Network Trajectory Predictors,” Dec. 2022, [Online]. Available: http://arxiv.org/abs/2212.04138
K. Sharma, S. Verma, S. Medya, A. Bhattacharya, and S. Ranu, “Task and Model Agnostic Adversarial Attack on Graph Neural Networks,” 2023. [Online]. Available: www.aaai.org
K. Sharma, S. Verma, S. Medya, A. Bhattacharya, and S. Ranu, “Task and Model Agnostic Adversarial Attack on Graph Neural Networks,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i12.26761
F. Noble, M. Xu, and F. Alam, “Static Hand Gesture Recognition Using Capacitive Sensing and Machine Learning,” Sensors, vol. 23, no. 7, Apr. 2023, doi: 10.3390/s23073419. DOI: https://doi.org/10.3390/s23073419
M. L. B. Freitas, J. J. A. Mendes, T. S. Dias, H. V. Siqueira, and S. L. Stevan, “Surgical Instrument Signaling Gesture Recognition Using Surface Electromyography Signals,” Sensors, vol. 23, no. 13, Jul. 2023, doi: 10.3390/s23136233. DOI: https://doi.org/10.3390/s23136233
X. Li and S. He, “The Application of the Gesture Analysis Method Based on Hybrid RF and CNN Algorithms in an IoT–VR Human–Computer Interaction System,” Processes, vol. 11, no. 5, May 2023, doi: 10.3390/pr11051348. DOI: https://doi.org/10.3390/pr11051348
R. E. Nogales and M. E. Benalcázar, “Hand Gesture Recognition Using Automatic Feature Extraction and Deep Learning Algorithms with Memory,” Big Data and Cognitive Computing, vol. 7, no. 2, Jun. 2023, doi: 10.3390/bdcc7020102. DOI: https://doi.org/10.3390/bdcc7020102
M. Li, H. Xia, P. Li, and H. Lu, “Gesture Recognition Algorithm Based on Computer Vision,” in Journal of Physics: Conference Series, Institute of Physics, 2023. doi: 10.1088/1742-6596/2508/1/012036. DOI: https://doi.org/10.1088/1742-6596/2508/1/012036
Y. Li, W. Xu, and X. Liu, “Research on Architectural Generation Design of Specific Architect’s Sketch Based on Image-To-Image Translation,” in Computational Design and Robotic Fabrication, vol. Part F1309, Springer, 2023, pp. 314–325. doi: 10.1007/978-981-19-8637-6_28. DOI: https://doi.org/10.1007/978-981-19-8637-6_28
S. Zhang and S. Ye, “Backdoor Attack against Face Sketch Synthesis,” Entropy, vol. 25, no. 7, Jul. 2023, doi: 10.3390/e25070974. DOI: https://doi.org/10.3390/e25070974
J. Li, Y. Li, G. Li, Z. Jin, Y. Hao, and X. Hu, “SkCoder: A Sketch-based Approach for Automatic Code Generation,” Feb. 2023, [Online]. Available: http://arxiv.org/abs/2302.06144
U. K. Dutta, “Fuse and Attend: Generalized Embedding Learning for Art and Sketches,” Aug. 2022, [Online]. Available: http://arxiv.org/abs/2208.09698
Q. Wang, D. Kong, F. Lin, and Y. Qi, “DiffSketching: Sketch Control Image Synthesis with Diffusion Models,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.18812
S. Guo et al., “A Simple Unified Uncertainty-Guided Framework for Offline-to-Online Reinforcement Learning,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.07541
I. Alarab and S. Prakoonwit, “Uncertainty estimation-based adversarial attacks: a viable approach for graph neural networks,” Soft comput, vol. 27, no. 12, pp. 7925–7937, Jun. 2023, doi: 10.1007/s00500-023-08031-0. DOI: https://doi.org/10.1007/s00500-023-08031-0
U. Ahmed and J. C. W. Lin, “Robust adversarial uncertainty quantification for deep learning fine-tuning,” Journal of Supercomputing, vol. 79, no. 10, pp. 11355–11386, Jul. 2023, doi: 10.1007/s11227-023-05087-5. DOI: https://doi.org/10.1007/s11227-023-05087-5
S. Ghamizi, J. Zhang, M. Cordy, M. Papadakis, M. Sugiyama, and Y. Le Traon, “GAT: Guided Adversarial Training with Pareto-optimal Auxiliary Tasks,” Feb. 2023, [Online]. Available: http://arxiv.org/abs/2302.02907
K. Maag and A. Fischer, “Uncertainty-based Detection of Adversarial Attacks in Semantic Segmentation,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.12825
X. Liu, H. Kuang, H. Liu, X. Lin, Y. Wu, and R. Ji, “Latent Feature Relation Consistency for Adversarial Robustness,” Mar. 2023, [Online]. Available: http://arxiv.org/abs/2303.16697
Y. Hou, Q. Guo, Y. Huang, X. Xie, L. Ma, and J. Zhao, “Evading DeepFake Detectors via Adversarial Statistical Consistency,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.11670 DOI: https://doi.org/10.1109/CVPR52729.2023.01181
M. Liu et al., “Feature Equilibrium: An Adversarial Training Method to Improve Representation Learning,” International Journal of Computational Intelligence Systems, vol. 16, no. 1, Dec. 2023, doi: 10.1007/s44196-023-00229-2. DOI: https://doi.org/10.1007/s44196-023-00229-2
H. Zhang, H. Tan, B. Zhu, L. Wang, M. Shafiq, and Z. Gu, “Learning to Discriminate Adversarial Examples by Sensitivity Inconsistency in IoHT Systems,” J Healthc Eng, vol. 2023, 2023, doi: 10.1155/2023/1177635. DOI: https://doi.org/10.1155/2023/1177635
B. G. Doan et al., “Feature-Space Bayesian Adversarial Learning Improved Malware Detector Robustness,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i12.26727
V. Purohit, “Ortho-ODE: Enhancing Robustness and of Neural ODEs against Adversarial Attacks,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.09179
P. Zhao and Z. Wan, “Robust Nonparametric Regression under Poisoning Attack,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.16771
L. Oakley, A. Oprea, and S. Tripakis, “Adversarial Robustness Verification and Attack Synthesis in Stochastic Systems,” Oct. 2021, [Online]. Available: http://arxiv.org/abs/2110.02125
G. Kim, J. Kim, and J.-S. Lee, “Exploring Adversarial Robustness of Vision Transformers in the Spectral Perspective,” Aug. 2022, [Online]. Available: http://arxiv.org/abs/2208.09602
A. Khan and A. Storkey, “Adversarial robustness of VAEs through the lens of local geometry,” Aug. 2022, [Online]. Available: http://arxiv.org/abs/2208.03923
S. Lee, Y. Il Yoon, and Y. J. Jung, “Generative Adversarial Network-Based Signal Inpainting for Automatic Modulation Classification,” IEEE Access, vol. 11, pp. 50431–50446, 2023, doi: 10.1109/ACCESS.2023.3279022. DOI: https://doi.org/10.1109/ACCESS.2023.3279022
W. Wang, J. An, H. Liao, L. Gan, and C. Yuen, “Radio Generation Using Generative Adversarial Networks with An Unrolled Design,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.13893
L. Zhang, S. Lambotharan, G. Zheng, G. Liao, B. Assadhan, and F. Roli, “Attention-Based Adversarial Robust Distillation in Radio Signal Classifications for Low-Power IoT Devices,” IEEE Internet Things J, vol. 10, no. 3, pp. 2646–2657, Feb. 2023, doi: 10.1109/JIOT.2022.3215188.
L. Zhang, S. Lambotharan, G. Zheng, G. Liao, B. Assadhan, and F. Roli, “Attention-Based Adversarial Robust Distillation in Radio Signal Classifications for Low-Power IoT Devices,” IEEE Internet Things J, vol. 10, no. 3, pp. 2646–2657, Feb. 2023, doi: 10.1109/JIOT.2022.3215188. DOI: https://doi.org/10.1109/JIOT.2022.3215188
Y. E. Sagduyu, “Adversarial Machine Learning and Defense Game for NextG Signal Classification with Deep Learning,” Dec. 2022, [Online]. Available: http://arxiv.org/abs/2212.11778 DOI: https://doi.org/10.1109/MILCOM55135.2022.10017674
Z. Min, Q. Ge, and Z. Li, “10 hours data is all you need,” Oct. 2022, [Online]. Available: http://arxiv.org/abs/2210.13067
N. Ito and M. Sugiyama, “Audio Signal Enhancement with Learning from Positive and Unlabelled Data,” Oct. 2022, [Online]. Available: http://arxiv.org/abs/2210.15143
X. Xu et al., “BLAT: Bootstrapping Language-Audio Pre-training based on AudioSet Tag-guided Synthetic Data,” Mar. 2023, [Online]. Available: http://arxiv.org/abs/2303.07902 DOI: https://doi.org/10.1145/3581783.3613820
Y. Hou and D. Botteldooren, “Event-related data conditioning for acoustic event classification,” in Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, International Speech Communication Association, 2022, pp. 1561–1565. doi: 10.21437/Interspeech.2022-11481. DOI: https://doi.org/10.21437/Interspeech.2022-11481
Y. Kang, T. Liu, H. Li, Y. Hao, and W. Ding, “Self-Supervised Audio-and-Text Pre-training with Extremely Low-Resource Parallel Data,” Apr. 2022, [Online]. Available: http://arxiv.org/abs/2204.04645
S. Pratik et al., “Mapping Oxidation and Wafer Cleaning to Device Characteristics Using Physics-Assisted Machine Learning,” ACS Omega, vol. 7, no. 1, pp. 933–946, Jan. 2022, doi: 10.1021/acsomega.1c05552. DOI: https://doi.org/10.1021/acsomega.1c05552
F. Curreri, L. Pataneè, and M. G. Xibilia, “RNN- and LSTM-based soft sensors transferability for an industrial process,” Sensors (Switzerland), vol. 21, no. 3, pp. 1–20, Feb. 2021, doi: 10.3390/s21030823. DOI: https://doi.org/10.3390/s21030823
Z. Liu, M. Jiang, and T. Luo, “Leveraging Low-Fidelity Data to Improve Machine Learning of Sparse High-Fidelity Thermal Conductivity Data via Transfer Learning.”
M. Xiao, C. Hu, and Z. Wu, “Modeling and predictive control of nonlinear processes using transfer learning method,” AIChE Journal, vol. 69, no. 7, Jul. 2023, doi: 10.1002/aic.18076. DOI: https://doi.org/10.1002/aic.18076
X. Zhao, Y. Pan, C. Xiao, S. Chandar, and J. Rajendran, “Conditionally Optimistic Exploration for Cooperative Deep Multi-Agent Reinforcement Learning,” Mar. 2023, [Online]. Available: http://arxiv.org/abs/2303.09032
Y. Chandak et al., “Representations and Exploration for Deep Reinforcement Learning using Singular Value Decomposition,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.00654
S. Mirzaee Bafti, C. Siang Ang, G. Marcelli, M. Moinul Hossain, S. Maxamhud, and A. D. Tsaousis, “BioGAN: An unpaired GAN-based image to image translation model for microbiological images.” [Online]. Available: https://github.com/Kahroba2000/BioGAN.
T. Ma, B. Li, W. Liu, M. Hua, J. Dong, and T. Tan, “CFFT-GAN: Cross-Domain Feature Fusion Transformer for Exemplar-Based Image Translation,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i2.25279
Y. Shi, X. Zhou, P. Liu, and I. W. Tsang, “UTSGAN: Unseen Transition Suss GAN for Transition-Aware Image-to-image Translation,” Apr. 2023, [Online]. Available: http://arxiv.org/abs/2304.11955
J. H. Jacobsen, J. Behrmann, R. Zemel, and M. Bethge, “Excessive invariance causes adversarial vulnerability,” in 7th International Conference on Learning Representations, ICLR 2019, International Conference on Learning Representations, ICLR, 2019.
M. Lu and B. Chen, “On the Adversarial Robustness of Generative Autoencoders in the Latent Space,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.02202
X. Gao, C. Zhou, F. Chao, L. Yang, C. M. Lin, and C. Shang, “A Robotic Writing Framework-Learning Human Aesthetic Preferences via Human-Machine Interactions,” IEEE Access, vol. 7, pp. 144043–144053, 2019, doi: 10.1109/ACCESS.2019.2944912. DOI: https://doi.org/10.1109/ACCESS.2019.2944912
Q. Li et al., “Solving Robotic Trajectory Sequential Writing Problem via Learning Character’s Structural and Sequential Information,” IEEE Trans Cybern, vol. 54, no. 2, pp. 1096–1108, Feb. 2024, doi: 10.1109/TCYB.2022.3194700. DOI: https://doi.org/10.1109/TCYB.2022.3194700
Daniel Mitchell, “Symbiotic System of Systems Design for Safe and Resilient Autonomous Robotics in Offshore Wind Farms,” IEEE, doi: 10.1109/ACCESSmber.2017.Doi.
S. Bernardini et al., “A Multi-Robot Platform for the Autonomous Operation and Maintenance of Offshore Wind Farms A Multi-Robot Platform for the Autonomous Operation and Maintenance of Offshore Wind Farms. In Autonomous Agents and Multi-Agent Systems (AAMAS) 2020 International Foundation for Autonomous Agents and Multiagent Systems. Published in: Autonomous Agents and Multi-Agent Systems (AAMAS) 2020 A Multi-Robot Platform for the Autonomous Operation and Maintenance of Offshore Wind Farms Blue Sky Ideas Track.” [Online]. Available: http://man.ac.uk/04Y6Bo]
M. E. Sayed et al., “Modular Robots for Enabling Operations in Unstructured Extreme Environments,” Advanced Intelligent Systems, vol. 4, no. 5, May 2022, doi: 10.1002/aisy.202000227. DOI: https://doi.org/10.1002/aisy.202000227
T. M. Johansson, D. Dalaklis, and A. Pastra, “Maritime robotics and autonomous systems operations: Exploring pathways for overcoming international techno-regulatory data barriers,” J Mar Sci Eng, vol. 9, no. 6, Jun. 2021, doi: 10.3390/jmse9060594. DOI: https://doi.org/10.3390/jmse9060594
O. Gungor, T. Rosing, and B. Aksanli, “Adversarial-HD: Hyperdimensional Computing Adversarial Attack Design for Secure Industrial Internet of Things,” in ACM International Conference Proceeding Series, Association for Computing Machinery, May 2023, pp. 1–6. doi: 10.1145/3576914.3587484. DOI: https://doi.org/10.1145/3576914.3587484
Y. Ma and Z. Zhou, “Adversarial Attacks on Adversarial Bandits,” Jan. 2023, [Online]. Available: http://arxiv.org/abs/2301.12595
Y. Tu, S. Rampazzi, and X. Hei, “Towards Adversarial Control Loops in Sensor Attacks: A Case Study to Control the Kinematics and Actuation of Embedded Systems,” Mar. 2022, [Online]. Available: http://arxiv.org/abs/2203.07670
J. Strubel, “Detecting Neural Trojans Through Merkle Trees.”
P. Kaushik, “Unleashing the Power of Multi-Agent Deep Learning: Cyber-Attack Detection in IoT,” International Journal for Global Academic & Scientific Research, vol. 2, no. 2, pp. 23–45, Jun. 2023, doi: 10.55938/ijgasr.v2i2.46. DOI: https://doi.org/10.55938/ijgasr.v2i2.46
A. Sarihi, A. Patooghy, P. Jamieson, and A.-H. A. Badawy, “Trojan Playground: A Reinforcement Learning Framework for Hardware Trojan Insertion and Detection,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.09592
S. Das and S. Ghosh, “TrojanNet: Detecting Trojans in Quantum Circuits using Machine Learning,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.16701
M. E. Hussein, S. S. Janakiraman, and W. AbdAlmageed, “Trojan Model Detection Using Activation Optimization,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.04877
W. Feng, L. Ju, L. Wang, K. Song, X. Zhao, and Z. Ge, “Unsupervised Domain Adaptation for Medical Image Segmentation by Selective Entropy Constraints and Adaptive Semantic Alignment,” 2023. [Online]. Available: www.aaai.org DOI: https://doi.org/10.1609/aaai.v37i1.25138
T. Kataria, B. Knudsen, and S. Elhabian, “Unsupervised Domain Adaptation for Medical Image Segmentation via Feature-space Density Matching,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.05789
T. Kataria, B. Knudsen, and S. Elhabian, “Unsupervised Domain Adaptation for Medical Image Segmentation via Feature-space Density Matching,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.05789
T. Vo and N. Khan, “Edge-preserving Domain Adaptation for semantic segmentation of Medical Images,” Nov. 2021, [Online]. Available: http://arxiv.org/abs/2111.09847
N. Kern and C. Waldschmidt, “Data Augmentation in Time and Doppler Frequency Domain for Radar-based Gesture Recognition,” in 2021 18th European Radar Conference, EuRAD 2021, Institute of Electrical and Electronics Engineers Inc., 2021, pp. 33–36. doi: 10.23919/EuRAD50154.2022.9784553. DOI: https://doi.org/10.23919/EuRAD50154.2022.9784553
J. Materzynska, G. Berger, and R. Memisevic, “The Jester Dataset: A Large-Scale Video Dataset of Human Gestures.”
L. Fiorini, F. G. Cornacchia Loizzo, A. Sorrentino, E. Rovini, A. Di Nuovo, and F. Cavallo, “The VISTA datasets, a combination of inertial sensors and depth cameras data for activity recognition,” Sci Data, vol. 9, no. 1, Dec. 2022, doi: 10.1038/s41597-022-01324-3. DOI: https://doi.org/10.1038/s41597-022-01324-3
A. Kapitanov, K. Kvanchiani, A. Nagaev, R. Kraynov, and A. Makhliarchuk, “HaGRID - HAnd Gesture Recognition Image Dataset,” Jun. 2022, [Online]. Available: http://arxiv.org/abs/2206.08219
G. Datt Joshi and J. Sivaswamy, “A SIMPLE SCHEME FOR CONTOUR DETECTION,” 2006.
J.-J. Hwang and T.-L. Liu, “Contour Detection Using Cost-Sensitive Convolutional Neural Networks,” Dec. 2014, [Online]. Available: http://arxiv.org/abs/1412.6857
S. Meng, “Noise elimination and contour detection based on innovative target image contour coding algorithm,” Shock and Vibration, vol. 2020, 2020, doi: 10.1155/2020/8895000. DOI: https://doi.org/10.1155/2020/8895000
C. Lin, G. Xu, and Y. Cao, “Contour detection model using linear and non-linear modulation based on non-CRF suppression,” IET Image Process, vol. 12, no. 6, pp. 993–1003, Jun. 2018, doi: 10.1049/iet-ipr.2017.0679. DOI: https://doi.org/10.1049/iet-ipr.2017.0679
G. I. Winata, L.-K. Huang, S. Vadlamannati, and Y. Chandarana, “Multilingual Few-Shot Learning via Language Model Retrieval,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.10964
R. K. Helmeczi, M. Cevik, and S. Yıldırım, “Few-shot learning for sentence pair classification and its applications in software engineering,” Jun. 2023, [Online]. Available: http://arxiv.org/abs/2306.08058 DOI: https://doi.org/10.32920/26866606
F. Moghimifar, F. Shiri, V. Nguyen, R. Haffari, and Y.-F. Li, “Few-shot Domain-Adaptive Visually-fused Event Detection from Text,” May 2023, [Online]. Available: http://arxiv.org/abs/2305.03517 DOI: https://doi.org/10.23919/FUSION52260.2023.10224213
A. Abbasi, A. R. R. Javed, A. Yasin, Z. Jalil, N. Kryvinska, and U. Tariq, “A Large-Scale Benchmark Dataset for Anomaly Detection and Rare Event Classification for Audio Forensics,” IEEE Access, vol. 10, pp. 38885–38894, 2022, doi: 10.1109/ACCESS.2022.3166602. DOI: https://doi.org/10.1109/ACCESS.2022.3166602
M. Cychosz et al., “Longform recordings of everyday life: Ethics for best practices,” Behav Res Methods, vol. 52, no. 5, pp. 1951–1969, Oct. 2020, doi: 10.3758/s13428-020-01365-9. DOI: https://doi.org/10.3758/s13428-020-01365-9
A. Mesaros et al., “Sound event detection in the DCASE 2017 Challenge,” IEEE/ACM Transactions on Audio, vol. 27, no. 6, 2019, doi: 10.1109/TASLP.2019.2907016ï. DOI: https://doi.org/10.1109/TASLP.2019.2907016
A. Politis, S. Adavanne, D. Krause, A. Deleforge, P. Srivastava, and T. Virtanen, “A Dataset of Dynamic Reverberant Sound Scenes with Directional Interferers for Sound Event Localization and Detection,” Jun. 2021, [Online]. Available: http://arxiv.org/abs/2106.06999.
Alkhowaiter, M., Kholidy, H., Alyami, M.A., Alghamdi, A. and Zou, C., 2023. Adversarial-aware deep learning system based on a secondary classical machine learning verification approach. Sensors, 23(14), p.6287. DOI: https://doi.org/10.3390/s23146287
Puttagunta, M.K., Ravi, S. and Nelson Kennedy Babu, C., 2023. Adversarial examples: attacks and defences on medical deep learning systems. Multimedia Tools and Applications, 82(22), pp.33773-33809. DOI: https://doi.org/10.1007/s11042-023-14702-9
Alkadi, S., Al-Ahmadi, S. and Ismail, M.M.B., 2023. Better safe than never: A survey on adversarial machine learning applications towards iot environment. Applied Sciences, 13(10), p.6001. DOI: https://doi.org/10.3390/app13106001
Khan, M. and Ghafoor, L., 2024. Adversarial Machine Learning in the Context of Network Security: Challenges and Solutions. Journal of Computational Intelligence and Robotics, 4(1), pp.51-63.
Al-Maliki, S., Qayyum, A., Ali, H., Abdallah, M., Qadir, J., Hoang, D.T., Niyato, D. and Al-Fuqaha, A., 2024. Adversarial Machine Learning for Social Good: Reframing the Adversary as an Ally. IEEE Transactions on Artificial Intelligence. DOI: https://doi.org/10.1109/TAI.2024.3383407
Shi, F., Zhang, C., Miki, T., Lee, J., Hutter, M. and Coros, S., 2024. Rethinking Robustness Assessment: Adversarial Attacks on Learning-based Quadrupedal Locomotion Controllers. arXiv preprint arXiv:2405.12424. DOI: https://doi.org/10.15607/RSS.2024.XX.057
Corsi, D., Amir, G., Katz, G. and Farinelli, A., 2024. Analyzing Adversarial Inputs in Deep Reinforcement Learning. arXiv preprint arXiv:2402.05284.
Schott, L., Delas, J., Hajri, H., Gherbi, E., Yaich, R., Boulahia-Cuppens, N., Cuppens, F. and Lamprier, S., 2024. Robust Deep Reinforcement Learning Through Adversarial Attacks and Training: A Survey. arXiv preprint arXiv:2403.00420.
Randhawa, R.H., Aslam, N., Alauthman, M., Khalid, M. and Rafiq, H., 2024. Deep reinforcement learning based Evasion Generative Adversarial Network for botnet detection. Future Generation Computer Systems, 150, pp.294-302. DOI: https://doi.org/10.1016/j.future.2023.09.011
Wu, W., Pierazzi, F., Du, Y. and Brandão, M., 2024, January. Characterizing physical adversarial attacks on robot motion planners. In 2024 IEEE International Conference on Robotics and Automation (ICRA). DOI: https://doi.org/10.1109/ICRA57147.2024.10610344
Neupane, S., Mitra, S., Fernandez, I.A., Saha, S., Mittal, S., Chen, J., Pillai, N. and Rahimi, S., 2024. Security Considerations in AI-Robotics: A Survey of Current Methods, Challenges, and Opportunities. IEEE Access. DOI: https://doi.org/10.1109/ACCESS.2024.3363657
Nahavandi, S., Alizadehsani, R., Nahavandi, D., Lim, C.P., Kelly, K. and Bello, F., 2024. Machine learning meets advanced robotic manipulation. Information Fusion, 105, p.102221. DOI: https://doi.org/10.1016/j.inffus.2023.102221
Turchet, Luca, György Fazekas, Mathieu Lagrange, Hossein S. Ghadikolaei, and Carlo Fischione. "The internet of audio things: State of the art, vision, and challenges." IEEE internet of things journal 7, no. 10 (2020): 10233-10249. DOI: https://doi.org/10.1109/JIOT.2020.2997047
Brylawski, S. (2003, July). Review of audio collection preservation trends and challenges. In Sound Savings: Preserving Audio Collections; Proceedings of a symposium sponsored by school of information, preservation and conservation studies, University of Texas at Austin, Library of Congress, National Recording Preservation Board, Association of Research Libraries, Austin, Texas (pp. 17-27).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Tabarak Ali Abdalkareem, Khamis A. Zidan, A. S. Albahri

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /var/www/vhosts/ijser.aliraqia.edu.iq/httpdocs/plugins/generic/citations/CitationsPlugin.inc.php on line 49







