Design and Implement of Step-Up DC-DC Converter with a Professional Approach using MATLAB/Simulink

Authors

  • Ali M. Jasim Network Engineering Department, Al-Iraqia University, Iraq

DOI:

https://doi.org/10.58564/IJSER.2.4.2023.126

Keywords:

Step-up Converter, Input Voltage Source, Output Voltage Source, MATLAB/Simulink

Abstract

Step-up converters find extensive application in various sectors, including powered vehicles, photovoltaic systems, continuous power supplies, and fuel cell systems. This paper describes the process of designing and building a resistive load step-up (boost) converter, which is a widely used industry application for increasing the direct current (DC) input voltage. This study focuses on ascertaining the appropriate values for the inductor and capacitor within the circuit. The design primarily emphasizes continuous mode operation, involving varying voltage inputs of 10V and 20V DC, while employing a switching frequency input of 25 kHz with the IGBT serving as the switching device. The design evaluation of this circuit aims to regulate the input voltage to support a stable output voltage of 30 VDC, with a simulation power conversion efficiency of 96.18 percent for the input voltage,10V, and a simulation power conversion efficiency of 96.08 percent for the input voltage,20V. This examination also incorporates the requirement of a ripple inductor current, which should not exceed 25% of the total inductor current, and an output voltage ripple is less than 1%. The circuit design parameters are determined based on factors such as output voltage, inductor voltage, and inductor current waveform. MATLAB Simulink software will be used to check the circuit design, thus confirming the agreement between simulation results and theoretical predictions. The simulation results provide compelling evidence that the established model proficiently maintains the output voltage under diverse input voltage scenarios. As a result, these parameters are suitable for the construction of a fully operational boost converter circuit. This paper systematically presents all objectives, calculations, experiments, data, and results in a comprehensive manner.

References

T. Sutikno, A. S. Samosir, R. A. Aprilianto, H. S. Purnama, W. Arsadiando, and S. Padmanaban, “Advanced DC-DC converter topologies for solar energy harvesting applications: A review,” Clean Energy, vol. 7, no. 3, pp. 555–570, 2023, doi: 10.1093/ce/zkad003.

S. A. Lopa, S. Hossain, M. K. Hasan, and T. K. Chakraborty, “Design and Simulation of DC-DC Converters,” Int. Res. J. Eng. Technol., pp. 2395–56, 2016.

J. J.Duair, A. I. Majeed, and G. M. Ali, “Design of Maximum Power Point Tracker Controller for Boost Converter Photovoltaic Array System Based on Fuzzy Mamdani Logic,” J. Eng. Sustain. Dev., vol. 25, no. Special, pp. 1-13-1–25, 2021, doi: 10.31272/jeasd.conf.2.1.3.

M. M. S. Sulong et al., “Design and Simulation of High Gain DC-DC Boost Converter System for PV Application,” 4th Int. Iraqi Conf. Eng. Technol. Their Appl. IICETA 2021, no. October 2022, pp. 179–183, 2021, doi: 10.1109/IICETA51758.2021.9717915.

V. Behravesh, R. Keypour, and A. Akbari Foroud, “Control strategy for improving voltage quality in residential power distribution network consisting of roof-top photovoltaic-wind hybrid systems, battery storage and electric vehicles,” Sol. Energy, vol. 182, no. February, pp. 80–95, 2019, doi: 10.1016/j.solener.2019.02.037.

M. Ben Ammar, S. Sahnoun, A. Fakhfakh, and O. Kanoun, “Design of a DC-DC Boost Converter of Hybrid Energy Harvester for Low-Power Biomedical Applications,” Proc. 17th Int. Multi-Conference Syst. Signals Devices, SSD 2020, pp. 955–959, 2020, doi: 10.1109/SSD49366.2020.9364118.

M. P. State, “Analysis , Design and Modeling of Dc-Dc Converter Using Analysis , Design and Modeling of Dc-Dc Converter Using Simulink,” 2004.

M. Dursun and A. Gorgun, “Analysis and performance comparison of DC-DC power converters used in photovoltaic systems,” 2017 4th Int. Conf. Electr. Electron. Eng. ICEEE 2017, pp. 113–119, 2017, doi: 10.1109/ICEEE2.2017.7935804.

S. Sivakumar, M. J. Sathik, P. S. Manoj, and G. Sundararajan, “An assessment on performance of DC-DC converters for renewable energy applications,” Renew. Sustain. Energy Rev., vol. 58, pp. 1475–1485, 2016, doi: 10.1016/j.rser.2015.12.057.

R. Ayop and C. W. Tan, “Design of boost converter based on maximum power point resistance for photovoltaic applications,” Sol. Energy, vol. 160, no. August 2017, pp. 322–335, 2018, doi: 10.1016/j.solener.2017.12.016.

M. L. Katche, A. B. Makokha, S. O. Zachary, and M. S. Adaramola, “A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems,” Energies, vol. 16, no. 5, 2023, doi: 10.3390/en16052206.

A. S. Mansour, E. M. Sarhan, A. E. El-sabbe, and D. S. M. Osheba, “A Single-switch Non-isolated High Gain DC / DC Converter for PV Applications Electrical Engineering Department , Faculty of Engineering , Menoufia University , Shebin El-Kom Master of Science Candidate,” vol. 45, no. 3, pp. 261–271, 2022.

L. Zaghba, A. Borni, A. Bouchakour, and N. Terki, “Buck-boost converter system modelling and incremental inductance algorithm for photovoltaic system via Matlab / Simulink,” evue des Energies Renouvelables SIENR’14 Ghardaïa, pp. 63–70, 2014.

D. Bui, T. M. Mostafa, A. P. Hu, and R. Hattori, “DC-DC Converter Based Impedance Matching for Maximum Power Transfer of CPT System with High Efficiency,” 2018 IEEE PELS Work. Emerg. Technol. Wirel. Power Transf. Wow 2018, no. May 2019, pp. 1–5, 2018, doi: 10.1109/WoW.2018.8450929.

R. Reshma Gopi and S. Sreejith, “Converter topologies in photovoltaic applications – A review,” Renew. Sustain. Energy Rev., vol. 94, no. December 2017, pp. 1–14, 2018, doi: 10.1016/j.rser.2018.05.047.

K. S. Jyothi, “Battery Charging from Solar using Buck Converter with MPPT,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VI, pp. 3490–3493, 2021, doi: 10.22214/ijraset.2021.35919.

J. Veerabhadra and S. Nagaraja Rao, “Comparative assessment of high gain boost converters for renewable energy sources and electrical vehicle applications,” Energy Harvest. Syst., no. March, 2023, doi: 10.1515/ehs-2022-0144.

A. A. Lund, “Boost converter design with feedback control Boost converter design with feedback control,” 2021.

A. Charaabi, O. Barambones, A. Zaidi, and N. Zanzouri, “A novel two stage controller for a dc-dc boost converter to harvest maximum energy from the PV power generation,” Actuators, vol. 9, no. 2, 2020, doi: 10.3390/ACT9020029.

H. Hussein, A. Mahdi, and T. Abdul-Wahhab, “Design of a Boost Converter with MPPT Algorithm for a PV Generator Under Extreme Operating Conditions,” Eng. Technol. J., vol. 39, no. 10, pp. 1473–1480, 2021, doi: 10.30684/etj.v39i10.1888.

M. H. Taghvaee, M. A. M. Radzi, S. M. Moosavain, H. Hizam, and M. Hamiruce Marhaban, “A current and future study on non-isolated DC-DC converters for photovoltaic applications,” Renew. Sustain. Energy Rev., vol. 17, no. January, pp. 216–227, 2013, doi: 10.1016/j.rser.2012.09.023.

J. Gnanavadivel, K. Jayanthi, S. Vasundhara, K. V. Swetha, and K. Jeya Keerthana, “Analysis and design of high gain DC-DC converter for renewable energy applications,” Automatika, vol. 64, no. 3, pp. 408–421, 2023, doi: 10.1080/00051144.2023.2170062.

K. B. Nandha, K. Reddy, N. A. Kumar, K. Karthik, P. N. Kumar, and T. S. Deepak, “‘ Study of DC-DC Converters in PV Systems using MPPT Algorithm ,’” no. 7, pp. 402–407, 2023, doi: 10.46647/ijetms.2023.v07si01.067.

J. López Seguel, S. I. Seleme, and L. M. F. Morais, “Comparison of the performance of mppt methods applied in converters buck and buck-boost for autonomous photovoltaic systems,” Ingeniare, vol. 29, no. 2, pp. 229–244, 2021, doi: 10.4067/S0718-33052021000200229.

A. Agrahari, A. Verma, A. Maurya, and A. K. Pandey, “Comparative Analysis of Various DC-DC Converters using MATLAB,” vol. 11, no. 04, pp. 190–200, 2022, [Online]. Available: www.ijert.org

S. P. Litrán, E. Durán, J. Semião, and R. S. Barroso, “Single-switch bipolar output dc-dc converter for photovoltaic application,” Electron., vol. 9, no. 7, pp. 1–14, 2020, doi: 10.3390/electronics9071171.

R. F. Coelho, W. M. Dos Santos, and D. C. Martins, “Influence of power converters on PV maximum power point tracking efficiency,” 2012 10th IEEE/IAS Int. Conf. Ind. Appl. INDUSCON 2012, no. February, 2012, doi: 10.1109/INDUSCON.2012.6453083.

P. Rajivgandhi, S. A. Elankurisil, and M. Dinesh, “Improved Efficiency of the Solar Energy in Photovoltaic Systems with Direct Control Method Using SEPIC Converter,” vol. 5, no. 5, pp. 100–108, 2020.

S. Senthilkumar, V. Mohan, S. P. Mangaiyarkarasi, and M. Karthikeyan, “Analysis of Single-Diode PV Model and Optimized MPPT Model for Different Environmental Conditions,” Int. Trans. Electr. Energy Syst., vol. 2022, 2022, doi: 10.1155/2022/4980843.

C. S. Lee, S. S. Kim, and J. H. Yu, “Load and frequency dependent CMOS dual-mode DC-DC converter,” Microelectronics J., vol. 92, no. September, p. 104610, 2019, doi: 10.1016/j.mejo.2019.104610.

I. Ait Ayad, E. Elwarraki, and M. Baghdadi, “Intelligent Perturb and Observe Based MPPT Approach Using Multilevel DC-DC Converter to Improve PV Production System,” J. Electr. Comput. Eng., vol. 2021, no. Ic, 2021, doi: 10.1155/2021/6673022.

A. Raj and R. P. Praveen, “Highly efficient DC-DC boost converter implemented with improved MPPT algorithm for utility level photovoltaic applications,” Ain Shams Eng. J., vol. 13, no. 3, p. 101617, 2022, doi: 10.1016/j.asej.2021.10.012.

T. W. Hariyadi and A. Adriansyah, “Comparison of DC-DC Converters Boost Type in Optimizing the Use of Solar Panels,” 2020 2nd Int. Conf. Broadband Commun. Wirel. Sensors Powering, BCWSP 2020, pp. 189–194, 2020, doi: 10.1109/BCWSP50066.2020.9249464.

J. F. J. Van Rensburg, M. J. Case, and D. V. Nicolae, “Double-boost DC to DC converter,” IECON Proc. (Industrial Electron. Conf., no. 0, pp. 707–711, 2008, doi: 10.1109/IECON.2008.4758040.

A. Pradhan and B. Panda, “A simplified design and modeling of boost converter for photovoltaic sytem,” Int. J. Electr. Comput. Eng., vol. 8, no. 1, pp. 141–149, 2018, doi: 10.11591/ijece.v8i1.pp141-149.

A. Thiyagarajan, S. G. Praveen Kumar, and A. Nandini, “Analysis and comparison of conventional and interleaved DC/DC boost converter,” 2nd Int. Conf. Curr. Trends Eng. Technol. ICCTET 2014, vol. 38, no. 0, pp. 198–205, 2014, doi: 10.1109/ICCTET.2014.6966287.

R. Y. Barazarte, “Design of a Two-Level Boost Converter,” pp. 1–10, 2013.

J. Chauhan, P. Chauhan, T. Maniar, and A. Joshi, “Comparison of MPPT algorithms for DC-DC converters based photovoltaic systems,” 2013 Int. Conf. Energy Effic. Technol. Sustain. ICEETS 2013, vol. 1, no. 1, pp. 476–481, 2013, doi: 10.1109/ICEETS.2013.6533431.

D. Verma, S. Nema, R. Agrawal, Y. Sawle, and A. Kumar, “A Different Approach for Maximum Power Point Tracking (MPPT) Using Impedance Matching through Non-Isolated DC-DC Converters in Solar Photovoltaic Systems,” Electron., vol. 11, no. 7, 2022, doi: 10.3390/electronics11071053.

S. Kolsi, H. Samet, and M. Ben Amar, “Design Analysis of DC-DC Converters Connected to a Photovoltaic Generator and Controlled by MPPT for Optimal Energy Transfer throughout a Clear Day,” J. Power Energy Eng., vol. 02, no. 01, pp. 27–34, 2014, doi: 10.4236/jpee.2014.21004.

N. Hashim, Z. Salam, D. Johari, and N. F. N. Ismail, “DC-DC boost converter design for fast and accurate MPPT algorithms in stand-alone photovoltaic system,” Int. J. Power Electron. Drive Syst., vol. 9, no. 3, pp. 1038–1050, 2018, doi: 10.11591/ijpeds.v9.i3.pp1038-1050.

Z. Liu, J. Du, and B. Yu, “Design method of double-boost DC/DC converter with high voltage gain for electric vehicles,” World Electr. Veh. J., vol. 11, no. 4, pp. 1–21, 2020, doi: 10.3390/wevj11040064.

L. S. Xavier, W. C. S. Amorim, A. F. Cupertino, V. F. Mendes, W. C. do Boaventura, and H. A. Pereira, “Power converters for battery energy storage systems connected to medium voltage systems: a comprehensive review,” BMC Energy, vol. 1, no. 1, pp. 1–15, 2019, doi: 10.1186/s42500-019-0006-5.

N. Abouchabana, M. Haddadi, A. Rabhi, A. D. Grasso, and G. M. Tina, “Power efficiency improvement of a boost converter using a coupled inductor with a fuzzy logic controller: Application to a photovoltaic system,” Appl. Sci., vol. 11, no. 3, pp. 1–19, 2021, doi: 10.3390/app11030980.

Downloads

Published

2023-12-01

How to Cite

M. Jasim , A. (2023). Design and Implement of Step-Up DC-DC Converter with a Professional Approach using MATLAB/Simulink. Al-Iraqia Journal for Scientific Engineering Research, 2(4), 133–143. https://doi.org/10.58564/IJSER.2.4.2023.126

Issue

Section

Articles