“_~ ISSN: 2710-2165

Al-Iragia Journal for Scientific Engineering Research, Volume 4, Issue 3, September 2025 45 of 56

Harnessing Deep Learning for EEG Emotion
Recognition: A Hybrid Approach with Attention

Ali H. Abdulwahhab

Mechanisms

! Alaa Hussein Abdulaal “*'2, Ali M. Jasim "=, Riyam Ali Yassin'“'*, Morteza Valizadeh

® Ahmed Nidham Qasim"“'¢, A. F. M. Shahen Shah"*'’, Mehdi Chehel Amirani"=®

! Department of Electrical and Computer Engineering, Altinbas University, Istanbul, Turkey

Email: ahabdulwahhab@gmail.com

2 Department of Electrical Engineering, Urmia University, West Azerbaijan
Email: Engineeralaahussein@gmail.com

® Department of Space Technology and Non-conventional Energy Sources, National Aerospace University, Kharkiv, Ukraine

Email: drali7819@gmail.com

* Department of Electrical Engineering, Urmia University, West Azerbaijan
Email: RiyamAliYassin@gmail.com

® Department of Electrical Engineering, Urmia University, West Azerbaijan
Email: mo.valizade@urmia.ac.ir

® Department of Electronic and Control Engineering, Northern Technical University, Mosul, Irag

Email: Ahmednidham23@ntu.edu.iq

" Department of Electronics and Communication Engineering, Yildiz Technical University, Istanbul, Turkey

Article History

Received: Aug. 04, 2025
Revised: Oct. 13, 2025
Accepted: Oct. 18, 2025

Email: shah@yildiz.edu.tr

8 Department of Electrical Engineering, Urmia University, West Azerbaijan
Email: m.amirani@urmia.ac.ir

Abstract

Emotion recognition from EEG signals has emerged as a pivotal area of research, driven by its
transformative potential in healthcare, brain-computer interfaces, and affective computing systems.
However, the intrinsic complexity, non-linearity, and susceptibility to noise in EEG data present
significant challenges to accurate emotional state classification. This study proposes a robust and
interpretable hybrid deep learning model for EEG-based emotion recognition. The architecture integrates
Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and attention
mechanisms, together with advanced signal processing techniques such as Continuous Wavelet Transform
(CWT) and Power Spectral Density (PSD). This integrated approach facilitates the extraction of
comprehensive spatial, temporal, and spectral features from EEG signals, enhancing the model’s ability to
capture intricate patterns associated with emotional states. Experimental evaluations on the SEED-1V
dataset, encompassing four emotional categories—Neutral, Happy, Sad, and Fear—demonstrated the
model’s exceptional performance, achieving a macro-average F1-score of 93% and an area under the
ROC curve (AUC) of 0.94. These results validate the model’s effectiveness in accurately distinguishing
complex emotional patterns, even under noisy conditions and inter-class ambiguities. Overall, this
research advances the domain of EEG-based emotion recognition by introducing a high-performing,
interpretable framework suitable for real-world applications while laying the foundation for future
developments in adaptive neurofeedback systems and emotion-aware brain-computer interfaces.

Keywords- Attention Mechanisms, Deep Learning, EEG Emotion Recognition, Feature Extraction, Hybrid
Model.
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I. INTRODUCTION

Electric brain activity measured by EEG provides copious and direct information about the associated neural activity of emotion and,
hence, is a far better choice than the other modalities [1]. Due to its high temporal resolution, EEG is especially apt for emotion
detection in real time since the rapid changes in brain activity that characterize emotional processing are detectable [2]. Detection and
decoding of emotional cues can have revolutionary implications in mental health, where psychological disorders like depression or
worry could be detected at the earliest and timely intervention. In brain-computer systems, emotion detection can be used to tailor
system attitude in response to the emotional condition of the user, enriching the human-computer interaction in communication
devices, gaming, and cognitive enhancement systems [3]. In neurofeedback, emotion monitoring in real-time can be utilized to train
the user in regulating emotional reactions, hence achieving improved general well-being.

However, emotion detection accurately from EEG data is a highly demanding task since emotional responses are a nonlinear, highly
variable, and subject-specific phenomenon. Various subjects might feel and express their emotion differently, and it might not always
be possible to choose common brain activity patterns under a specific emotion in different subjects. Such subject-to-subject variation
imposes a tremendous task on the emotion recognition problem. Raw EEG signals, as shown in Figure 1, also gets corrupted by noise
and artifacts of various types, say, muscle activity blinks or even environmental noise, which distorts the signal's quality and adversely
affects the classifier's performance. Hence, such problems need to be addressed effectively using robust preprocessor and feature
extraction techniques so that the proper emotional signals can effectively be captured and analyzed.

In recent years, the combination of deep learning models [4-5] and advanced signal processing techniques has been found to have
great potential to enhance emotion detection systems. Methods such as the Continuous Wavelet Transform (CWT) [6] and Short-Time
Fourier Transform (STFT) are commonly used to extract time-frequency representations of EEG signals, which are beneficial for
capturing temporal and spectral information. These techniques convert the raw EEG data to a representation in which the content at
any given instant is emphasized, thereby presenting a more informative brain activity image [7]. Time-frequency representations,
through the use of the techniques of CWT and STFT, can present helpful information on the dynamic emotional conditions of
subjects, and more accurate emotion detection can be achieved. However, efficient use of the features in enhancing the detection of
emotion involves building advanced models that can operate on high-dimensional and complex data. Advanced models such as
Convolutional Neural Networks (CNNs) [8] and Recurrent Neural Networks (RNNs) [9] are highly effective in the extraction of
meaningful time-frequency representation patterns. However, it is not a simple task in real-world applications to build models that
utilize both the temporal and spectral cues and handle individuality and noise simultaneously. Accordingly, advanced hybrid models
using many deep models and signal processing techniques are needed to build more robust and accurate emotion detection systems.
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Figure 1. The signal channel raw EEG signal [10]

A novel hybrid architecture composed of Convolutional Neural Networks (CNNs) and an Attention mechanism is presented, using the
CWT and the PSD as parallel input to address this task. The CNN component can directly extract spatial cues from the time-frequency
representations naturally, and the Attention mechanism allows the classifier to zero in on the most helpful input data parts and,
therefore, increase its discriminative emotional cue extraction capabilities. We anticipate the hybrid architecture will utilize the
feature-learning capabilities of CNNs and the context-aware capabilities of attention mechanisms to achieve more accurate emotion
classification.
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Il. RELATED WORK

The junction of deep learning methodologies and biomedical signal processing has progressed significantly over the last two years,
enabling remarkable improvements in the automatic classification of intricate physiological signals.

Liu et al. published a CNN-BIiLSTM hybrid deep learning architecture augmented by DWT-based features for fetal acidosis detection
[11]. Their proposed method, integrating spatial feature extraction by the CNN and temporal pattern detection by bi-directional long
short-term memory (BiLSTM) networks, showed outstanding diagnostic performances compared to classical models. Integration of
DWT in the feature pipeline also contributed significantly towards overcoming the issue of overfitting and enhancing the
discriminatory power of the extracted features. This work emphasized the capabilities of hybrid models in efficiently removing the
intrinsic coupled nonlinear processes in physiological time series, and they showed robust performances in the context of fetal
monitoring.

In 2023, a new theoretical work by Farag applied the DSP viewpoint to explain the traditional convolutional layers of the networks
[12]. By conceptualizing the operations of the convolutions in the context of FIR filtering and continuous wavelet transforms (CWT),
Farag established the mathematics that guides CNN action. This enhanced the explainability of deep learning models and opened the
door to developing self-contained, computation-lean architectures tuned to get deployed in edge devices. It combined classical signal
processing paradigms and contemporary deep learning models and thus enhanced the flexibility of CNN-based models in various use
domains.

The study's progress was also seen in the research work of Abdulwahhab et al. in 2024, where they presented a fusion of CNN and
recurrent neural network (RNN) architecture in detecting epileptic seizures from EEG data [13]. Their two-pathway approach applied
both raw sequences of the EEG and time-frequency representation of the sequences by utilizing STFT and CWT transformations.
Using the multi-scale feature representation, the model realized high-performing classifier accuracies of more than 99%, indicating the
robustness of integrating spectral and temporal analysis in a single framework. The paper emphasized the revolutionary contributions
of deep feature fusion techniques in enhancing the validity of the diagnosis of neurological diseases.

Du et al. went one step beyond by introducing a light feature extraction network, the CWT-AM-CNN, for spectral aero-engine
infrared categorization [14]. With the utilization of a peak-finding mechanism in the continuous wave transformation domain and self-
attention mechanism, the method of Du et al. learned discriminative spectral features of diverse engines in a time-efficient manner.
The proposed approach ensured both high accuracy and computation efficiency, and thus, it holds high practicability in real-world
industrial scenarios, where quick inference is of top priority.

Similarly, Sun et al. proposed a new multi-feature fusion attentional neural network to recognize epileptic EEG signals [15]. They
combined the Hilbert spectrum (HS) analysis and the grayscale recurrence plots (GRP) to effectively capture the time-frequency and
the nonlinear dynamic behavior of the EEG signals. The subsequent use of a self-attention mechanism enabled dynamic weighting of
diverse sets of features, once more enhancing the expressive power and discriminability of the model. Sun et al.'s findings witnessed
the use of multi-domain feature extraction capabilities and advanced attention mechanisms despite heterogeneity and noise in the EEG
data.

Masad et al. also examined the stage classification of sleep using a CNN-based method that converted the epochs of the EEG into
time-frequency images before classifying them [16]. Their method recorded outstanding levels of accuracy above 99%, supporting the
use of convolutional architectures in the task of EEG-based pattern recognition. Of interest was that their method proved robust and
reliable across various EEG channels, providing flexibility and robustness for use in clinical sleep medicine scenarios.

Expanding the scope of cardiovascular diagnostics, Berrahou et al. (2025) proposed a hybrid Al arrhythmia forecast model based on
Higuchi's fractal dimension analysis, RR-interval properties, and attention-based CNN [17]. This hybrid approach efficiently
combined the morphological and temporal properties of the ECG signal in a way that allowed the model to produce high precision in
the complex scenario of the inter-patient classification problem. Their study emphasized the removal of class imbalances and dataset
heterogeneity, and the derived models generalize and operate effectively in a broad set of clinical situations.

These studies collectively indicate more advanced hybrid models, which integrate the complementary capabilities of CNNs, RNNs,
and attention mechanisms. While contemporary models achieve high levels of accuracy under controlled conditions, a series of
challenges persist, including narrow generalizability to noisy real-world data and high-complexity architecture computational
overheads. Overdependence on preprocessing pipelines can also hamper the solution's scalability. Building on the above insights,
research in the current study extends a next-generation hybrid architecture, blending CNN, LSTM, attention mechanisms, and dual
CWT and STFT feature extraction streams. By probing the context of adaptive feature fusion and optimization in accuracy and
computational cost, the research seeks to bridge present gaps and facilitate the practical applicability of EEG-based classifier systems
in emotional state recognition.

[1l. METHODOLOGY

A. SEED-IV Dataset

SEED-IV is a multimodal dataset established by Shanghai Jiao Tong University's Brain and Cognitive Science Lab (BCMI) to study
emotion recognition [18]. It includes 15 subjects and three sessions per subject, 24 trials per session, and 1,080 trials. Trials are evenly
distributed over four emotion categories: happy, sad, fearful, and neutral, as shown in Figure. 2. In a trial, subjects viewed movie clips
selected to evoke specific emotions. At the same time, a 62-channel ESI NeuroScan System captured the EEG data at a sampling rate
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of 1000 and the eye movement data using SMI eye-tracking glasses. SEED-IV is a valuable contribution to developing practical
computing and brain-computer interface research.
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Figure 2. EEG acquisition experimental process [19]

B. Proposed Model
1. Overview

The method proposed in Figure 3 is a deep learning approach incorporating ResNet-18, LSTM, and attention mechanisms to boost
feature representation and classification accuracy. It begins with two primary pipelines of feature extraction: ResNet 18-Att, which
uses a CNN coupled with an attention mechanism to highlight useful spatial features, and LSTM-SR, which processes ordering data
by passing it to the LSTM network. These are then boosted by two specialized modules, i.e., LSTM-SE, which uses a Squeeze-and-
Excitation (SE) mechanism to normalize the feature weights, and ResNet18-Att, which boosts spatial features using attention
mechanisms. The two pipelines are feature-fused using the Adaptive Feature Fusion method, allowing the model to merge the salient
information before final classification.
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Figure 3. Proposed Model
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2. Pre-processing

For pre-processing of the SEED-1V dataset, the raw EEG data of the 3 selected channels, Fpl, Fp2, and Fz, have been used since they
are of maximum use in emotional processing. These data were initially band-pass filtered in the 1-75 Hz frequency band to remove
unwanted artifacts and noise, preserving the brainwave frequencies responsible for the emotional responses. These trials, which were
240 seconds or 4 minutes, were partitioned into 4 overlapping pieces with 60 seconds each. Such segmentation helps process the
brain's activity in shorter durations to detect dynamic changes due to emotional stimuli. Overlapping pieces (50% overlap) will enable
temporal continuity and sufficient data points available to detect the features by extraction. After pre-processing, the data will be
examined using feature extraction techniques, viz., Continuous Wavelet Transform (CWT) and Power Spectral Density (PSD), to
detect spectral-temporal features and power distribution in different frequency bands, respectively.

The four emotion labels in the dataset are Neutral, Happiness, Sadness, and Fear. Each label has 270 trials, each corresponding to an
emotional stimulus. There are 3 channels and 4 overlapping parts per trial, so the parts per label are 3,240. In total, the four labels
contain 12,960 samples or segments. This pre-processing prepares the dataset for analysis and the subsequent building of the model.

C. Feature extraction
1. Continuous Wavelet Transform

The Continuous Wavelet Transform (CWT) is applied to the segmented EEG data to capture spectral and temporal properties [20].
CWT provides a time-frequency representation of the signal wherein the transient and the brain's oscillatory activity can be examined,
which is important in emotional response analysis. CWT is applied by convolving the signal using a wavelet function that scales and
shifts in the data. Converting the signal's frequency components over time details the evolving frequency bands as they progress along
the trial.

CWT is computed in the preprocessing pipeline on each 60-second chunk of the EEG signal. A sliding window approach is used,
where a window of one second is slid over the trial chunk, obtaining a total of 60 windows per trial. These windows have 1,000
samples based on the 1,000 Hz per second sampling rate. Morlet wavelet is typically favored, as it offers a good compromise between
time and frequency localization. The CWT formula is provided mathematically as:

CWT, (a,b) = x (D) P b) dt )

Where a and b are scale and translation, respectively, x(t) is the EEG signal, and v is the mother wavelet

The result of the CWT is the scalogram, a time-frequency representation of a 2D plot with time along the x-axis, frequency or scale
along the y-axis, and amplitude of wavelet coefficient as color value. One scalogram result, one per epoch of the time period of 60 sec
and of dimension 77 x 60 (60-time points and 77 frequency bands), is produced, enabling a high-resolution view of the spectral-
temporal features of the EEG signal. This scalogram is a visual representation of the EEG signal in the guise of an image and is
readily available to use in the subsequent feature extraction and classification analysis.

2. Power Spectral Density

Power Spectral Density (PSD) is a transformation method applied to the segmented EEG data to study the power distribution in the
signal across the different bands of frequencies [21]. PSD provides details on the power distribution of the EEG signal in the different
frequency components under study, and it helps identify the emotional state or cognitive process in question. PSD, in contrast to the
Continuous Wavelet Transform (CWT), which provides time-frequency graphical plots, PSD is more focused on the measurement of
the power in the specific bands of frequencies, i.e., delta, theta, alpha, beta, and gamma, commonly applied in the cognitive process
and EEG analysis.

The PSD is calculated per 60-second segmented EEG signal during the preprocessing pipeline. One of the steps is to apply the Fourier
Transform to every one of the segments to convert the time-domain signal to the frequency domain. This deconstructs the signal to its
respective frequencies. Subsequently, the Welch method is typically applied to estimate the power spectral density. This involves
partitioning the signal into overlapping sections, using a windowing function (in the present case, the Hamming window), and
averaging periodograms to keep the variance low and produce a smooth spectral power estimate.
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http://doi.org/10.58564/1JSER.4.3.2025.323 Bv_sa https://ijser.aliragia.edu.iq



Al-Iragia Journal for Scientific Engineering Research, VVolume 4, Issue 3, September 2025 50 of 56
ISSN: 2710-2165

The formula of PSD is mathematically given as:

T 2

PSD(f) = }i_r){)lo% fx(t)e—ﬂ"ffdt (2)

0

The derived PSD thus presents a 1D representation of the signal's power distribution as a function of the different frequencies. Power
distribution is typically plotted across the traditional frequency bands (i.e., delta, theta, alpha, and beta) and can be used to demarcate
the brain activity's intensity at different frequencies, typically referring to emotional/affective or cognitive workload states.

Following the computation of the PSD of all segments, the frequency domain features thus extracted are applied in the analysis and
the classification. The outcome of the transformation is a vector of power levels in different frequency bands. Power levels are
valuable features in the ensuing classification models in detecting emotional states or cognitive processes.

D. ResNet 18

ResNet-18, a deep residual family member, is a strong deep convolutional neural network architecture that is extensively found to
work efficiently in the task of hierarchical feature extraction of highly intricate biomedical signals, like in the situation of EEG.
ResNet architectures, which were initially put forward by He et al., address the notorious problem of the vanishing gradient standard
in deep networks by providing identity-based skip connections, hence facilitating the backpropagation of the gradient easily in deep
layers. In the present study, ResNet-18 serves as a building block in the feature extraction module so that the model can learn the
discriminative representation of the time-frequency images formed through Continuous Wavelet Transform (CWT).

ResNet-18 comprises 18 weighted layers structured in convolutional blocks alternated by batch normalization and rectified linear unit
(ReLU) activations [22]. Convolutional blocks consist of a residual connection that bypasses the transformation layers so the network
can learn residual mappings, not direct feature transformations. This addresses the degradation problem of multi-layer networks;
whereby additional layers tend to cause the performance to saturate or decrease [23].

For emotion recognition using EEG, ResNet-18 retains several distinct advantages. First, its relatively lightweight framework balances
computation efficiency. It does not compromise the depth of abstraction of the features due to the high-dimensional spectrogram and
scalogram outputs of the EEG data. Second, the residual connections facilitate the ease of learning low- and high-level abstractions
and the detection of minute neurophysiological characteristics of diverse emotional states by the model. Third, pre-training the
network using large-scale databases and fine-tuning the EEG dataset yields the benefits of transfer learning, including improved
convergence and generalization.

In this work, ResNet-18 was implemented carefully in the presented hybrid architecture, which receives time-frequency
representations and yields spatial features necessary for further classification. Subsequently, the feature maps generated by ResNet-18
are fed through attention modules and sequential models such as LSTM layers to capture both the spatial hierarchies and the temporal
relations of the EEG data. Integration in this manner ensures that the ResNet-18 module facilitates robust feature learning, general
explain ability, and the system's performance.

Besides, extensive empirical experiments verified the efficacy of ResNet-18 in the hybrid system. Its architecture outperformed in
discriminative feature extraction of various emotional classes, thereby verifying its core role in the system. Its ability to efficiently
handle the input of the CWT validates its versatility for use in different spectral representations, making it a core building block in the
proposed emotion recognition pipeline.

E. Attention Module (Att)

Integrating the attention mechanisms into our deep learning architecture further enhanced the ability of the model to capture and
utilize EEG signal representations of emotion. Building on the high quality of feature extraction of ResNet18, the proposed Att
module intensifies these representations selectively to highlight emotion-relevant features in the EEG signal, as shown in Figure. 4. In
our hybrid architecture, the Att module follows directly after the ResNet18 feature extractor, operating on the dense frequential and
temporal representations of ResNet18's learned CWT-based scalogram. The figures show that the ResNet18 feature maps are passed
directly to the Att module to sharpen its representations.

The self-attention design is replaced by using the convolutional in the attention module. Specifically, the module includes two 2D
CNN layers, followed by ReLU activation functions. Using this convolutional architecture, the module learns spatial features in the
emotion-relevant feature maps of the input data. These CNN-ReLU layers' outputs are passed through a sigmoid activation function,
generating attention weights ranging from 0 to 1 for every element in the feature map. These attention weights are element-wise
multiplied by the initial ResNet18 feature map, effectively weighing the different spatial locations in the representation by scaling
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their importance. This multiplication step emphasizes the salient areas of the representation and under-emphasizes the less informative
areas, generating a more enhanced feature representation that better captures the implicit emotional states in the given EEG data.

This selective weighting is of particular utility in emotion recognition using EEG, in which the discriminative signal features tend to
be irregularly distributed both in time and the frequency domain. By weighing informative segments more and minimizing noise and
artifacts characteristic of the EEG data, the attention module outputs more discriminative representations. In addition to the gain in
performance, the attention module greatly helps interpret the model. By visualizing learned attention weights, we can identify areas of
the feature maps that are informative to the predictions and distill informative insights mapping computational outcomes to the
neurophysiological models of emotion processing.

[,

\_ Attention /

81I9N3Y

Figure 4. ResNet 18 - Attention Module

F.LSTM

Long Short-Term Memory (LSTM), a variant of the recurrent neural network (RNN), has proved highly effective in modeling
temporal relations in sequence data [24]. Initially proposed by Hochreiter and Schmidhuber in response to the exploding and
vanishing gradient problems of the traditional RNN, the LSTM networks utilize a novel memory cell design and the use of gating
mechanisms enabling the selective forgetting and remembering of data during the progression of long-term time intervals. These
attributes have made LSTM highly applicable as a method of processing medical, non-linear, and non-stationary signals, such as the
EEG, in which time dynamics are critical in distinguishing different emotional or cognitive states.

In the proposed hybrid architecture, the LSTM module plays the base temporal feature extractor role to identify the dynamic patterns
in the sequential EEG data. After the ResNet-18 module extracts the spatial features of the time-frequency representations, the spatial
features are reshaped to temporal sequences and fed to the LSTM layer. Due to the temporal modeling ability of LSTM, the network is
in a position to capture the nuanced temporal relationships typical of transient emotional expressions in the EEG signal.

Structurally, there are three primary gates in the LSTM module: the input gate, the forget gate, and the output gate. The input gate
regulates the flow of new data into the memory cell, the forget gate determines data to discard in the cell state, and the output gate
regulates the data flow to the subsequent layers. This gating provides the LSTM the ability to weigh the preservation of useful past
information and learning new temporal information and also aids the generalizing ability of the model in different time scales.
Furthermore, the use of LSTM in this context is not restricted to a one-way architecture. To capture a more comprehensive temporal
context, the architecture employs a bidirectional LSTM (BiLSTM) setup, in which the sequence data is fed in both the forward and the
backward directions. This double-pronged method ensures that the network will capture past and future relations in the EEG signal,
portraying a more accurate picture of the temporal processes underpinning emotional state.

Briefly, the LSTM module deepens the temporal dimension of the feature representations and narrows the gap between static spatial
features and dynamic temporal patterns. Its integration into the hybrid system assures the system's handling of complex EEG data,
resulting in more accurate and reliable emotion recognition results.

G. Sequence-extraction Module (SE)

The Sequence-extraction Module (SE) is one of the primary elements of our proposed hybrid architecture [25]. It is specifically
tailored to refine the model's ability to extract and structure sequential dependencies in the EEG data. Because the EEG data are time
series, and emotional processes emerge dynamically in time, effective extraction and representation of sequential dependencies are of
the highest priority to ensure accurate and reliable emotion detection.

As indicated in the architecture illustration, the SE module receives the input features of the LSTM network and processes them in a
thoughtfully structured method, as shown in Figure. 5. The module involves a highly advanced processing pipeline composed of five
significant components operating in a stepwise manner:
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Global Adaptive Pooling: The initial block (in magenta in the figure above) performs global adaptive pooling on the LSTM outputs,
compressing temporal data while preserving the primary details along the time axis. It effectively reduces the dimensionality while
maintaining the necessary emaotional content of the signal.

FC Layer: Following the pooling, the features pass through a fully connected layer (light pink) that transforms the pooled features into
a shape suitable for attention weighting.

ReLU Activation: In the third block (green), we apply the Rectified Linear Unit (ReLU) activation, which provides the flow of
processing with a degree of non-linearity and makes the system more competent in learning complicated data patterns.

Second FC Layer: This second fully connected layer (light yellow) further processes the feature representation and transforms it into a
space to compute the attention weights.

Sigmoid Activation; The final block (yellow) employs the sigmoid activation function to map the outputs to attention weights between
0 and 1. These weights indicate the importance of the different features in the original LSTM's output.

Attention is implemented by the multiplication operation () in the above figure, in which the sigmoid-activated weights are element-
wise multiplied by the initial LSTM features. This weighting enables the model to highlight the EEG signal's more informative
regions and ignore the signal's redundant parts.

The SE module contains a "Scale™ component following attention weighting, which scales the attention-weighted features. It finishes
by summing the scaled attention-weighted and input features using an element-wise addition operation (). It uses a residual
connection to enable the info flow and the backdrop during the training.

Empirical experiments in the present study revealed that including the Sequence-extraction Module contributed considerably to
enhancing the hybrid model's performance. Experiments in comparative settings revealed models utilizing SE performing better than
models not using the module under conditions where emotional alterations are subtle or in the presence of noisy signal conditions. The
module’s ability to extract and highlight time-related features was crucial in achieving robust classification outcomes across various
emotional states.

. 9% S

N1ST

SE

Figure 5. LSTM-Sequence-extraction Module

In addition, the SE module makes the system more interpretable by defining the time intervals most influential in emotion recognition.
Analyzing the attention weights generated by the sigmoid activation makes it easier to understand the temporal patterns given more
attention, revealing the emotional processing processes modeled by the model.

In summary, the Sequence-extraction Module is a crucial component of the temporal processing pipeline of the proposed framework.
By its sequential Global Adaptive Pooling, FC layers, and ReLU and Sigmoid activations, the SE module achieves a highly effective
attention mechanism that allows the model to extract the most informative temporal features of the EEG signals to detect emotions.
Such a capability is essential in achieving enhanced accuracy, robustness, and explain ability of the EEG-based emotion recognition
systems and moving the model towards practical use in affective computing systems.

IV. RESULTS

The hybrid model's performance is extensively displayed using three pertinent performance measures: the classification report table,
confusion matrix, ROC curve, and AUC measure. These measures present essential information about the model's potential for
classifying emotional states as Natural, Sad, Fear, and Happy with high precision and reliability.

The performance of the proposed hybrid model is presented in Table | and Figure. 6. The four emotion classes exhibit robust and
uniform performance in the classification table. In particular, Natural enjoys the highest precision of 95% and recall of 93%, for an
F1-score of 94%, demonstrating the model being highly consistent and confident in classifying the natural expressions. Sad ranks a
close second at a precision of 94%, recall of 93%, and an F1-score of 94%, demonstrating that the model is somewhat less precise in
identifying sadness but is consistent in the same measure. Fear and Happiness register precision and recall of approximately 91-93%,
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and the F1-scores register at 92%, demonstrating somewhat more variation in the classification than the other sentiments. Overall,
when the average of the entire set of classes is calculated, the macro-average precision is at 93%, the recall is at 92.5%, and the F1-
score is at 93%, demonstrating a stable and generalized performance in the absence of any skewed tendencies toward a specific
emotion.

These indicate the accuracy and balance at which the model classifies correct and incorrect positives and negatives—important in
emotion recognition experiments in which misclassifications give rise to mistyping of affective states.

TABLE I. EVALUATION MEASURES
labels Precision Recall F1-score Accuracy
Natural 95% 93% 94%
Sad 94% 93% 94%
Fear 92% 92% 92% 93%
Happy 91% 93% 92%
All 93% 92.5% 93%
Performance
96%
- 94%
Fl-score ' 90%
Recall 88%
sad Natural
Precision Happy Fear
All
W 88%-90% M 90%-92% 92%-94% ™ 94%-96%

Figure 6. Performance analysis

Figure 7 Confusion matrix provides visibility of the per-class distribution of the classification results. It shows good diagonal
dominance, where 298 Natural, 301 Sad, 300 Fear, and 302 Happy are classified correctly out of 324 per class. Misclassifications are
minimal and typically occur amongst similar or next-in-category emotion types. Natural, for example, is likely to be misclassified as
Sad (15 errors), perhaps due to the similarities in facial or physiological cues. Fear is sometimes mistaken as Sad or Neutral (10 errors
in both cases), perhaps reflecting the ambiguity of the emotional cues in the real-world situation. Happy, in all its relative
discriminability, is misclassified in 8-9 errors in other categories—still a narrow margin in the context of the overall correctness of the
system. This matrix provides not only the statistical high-performing status of the system but also its correct intuition of emotional
similarities, and hence, it is sufficient for use in real-time emotional analysis in real-world scenarios.
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Figure 7. Confusion matrix

Figure 8 presents the AUC of the hybrid model. The hybrid model's ROC curve is indicated by a high AUC value of 0.94,
demonstrating the high discriminatory power of the model. An AUC measures the model's discriminatory power in separating the two
classes—values close to 1 indicate high performance. An AUC of 0.94 implies the ability of the model to rank the positive instances
above the negative instances consistently, regardless of the emotion class, as needed in use scenarios where the decision boundary
might vary. This high AUC also reflects the model's resilience under scenarios of imbalanced data or different noise levels, common
in affective computing paradigms (e.g., EEG or image-based emotion detection).

Hybrid model

1.0 1

0.8

0.6

0.4 4

True Positive Rate

0.2

ool b7 —— Hybrid model (AUC = 0.94)

T . T T . .
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 8. ROC of the hybrid model

V. CONCLUSION

This study presents a novel hybrid deep learning framework for EEG-based emotion recognition, which integrates ResNet-18, LSTM,
and attention mechanisms, complemented by parallel feature extraction pathways utilizing Continuous Wavelet Transform (CWT) and
Power Spectral Density (PSD). By systematically combining spatial feature extraction through ResNet-18, temporal dynamics
modeling with LSTM, and selective emphasis on salient information via attention modules, the architecture captures the complex,
non-stationary patterns inherent in EEG signals related to emotional states. The incorporation of the Sequence-extraction Module (SE)
further refines temporal dependencies, allowing for accurate classification of transient and evolving emotional cues.
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Empirical results from the SEED-1V dataset demonstrate the efficacy of the proposed model, achieving high precision, recall, and F1
Scores across four emotional categories: Natural, Sad, Fear, and Happy. The hybrid model reached an overall macro-average F1 Score
of 93% and an AUC of 0.94, indicating robust generalization even amidst inter-class ambiguities and signal noise. Validation through
the confusion matrix revealed minimal misclassifications and high accuracy across all emotional classes.

In addition to quantitative performance, the architecture provides significant interpretability benefits. Visualization of attention
weights and sequence extraction activations offers insights into the temporal and spectral regions of EEG signals most indicative of
emotional states. This interpretability enhances model transparency and aligns computational findings with neuroscientific theories of
emotion processing, fostering confidence in real-world applications.

While substantial advancements have been achieved, opportunities for future exploration remain. Expanding the model to incorporate
multi-modal inputs, such as facial expressions or physiological signals, could enhance emation recognition accuracy. Additionally,
exploring domain adaptation techniques would improve generalizability across diverse populations and recording conditions, which
would be instrumental for clinical applications. Optimizing the model for real-time processing also presents the potential for
deployment in practical brain-computer interface systems and affective computing platforms.

In conclusion, the proposed hybrid model significantly advances EEG-based emotion recognition, offering a robust, interpretable, and
high-performing solution. Its effective integration of multi-scale feature extraction and advanced deep learning techniques makes it a
promising candidate for future research and applications in affective computing and neurotechnology.
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