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Abstract 
Emotion recognition from EEG signals has emerged as a pivotal area of research, driven by its 

transformative potential in healthcare, brain-computer interfaces, and affective computing systems. 

However, the intrinsic complexity, non-linearity, and susceptibility to noise in EEG data present 

significant challenges to accurate emotional state classification. This study proposes a robust and 

interpretable hybrid deep learning model for EEG-based emotion recognition. The architecture integrates 

Convolutional Neural Networks (CNN), Long Short-Term Memory (LSTM) networks, and attention 

mechanisms, together with advanced signal processing techniques such as Continuous Wavelet Transform 

(CWT) and Power Spectral Density (PSD). This integrated approach facilitates the extraction of 

comprehensive spatial, temporal, and spectral features from EEG signals, enhancing the model’s ability to 

capture intricate patterns associated with emotional states. Experimental evaluations on the SEED-IV 

dataset, encompassing four emotional categories—Neutral, Happy, Sad, and Fear—demonstrated the 

model’s exceptional performance, achieving a macro-average F1-score of 93% and an area under the 

ROC curve (AUC) of 0.94. These results validate the model’s effectiveness in accurately distinguishing 

complex emotional patterns, even under noisy conditions and inter-class ambiguities. Overall, this 

research advances the domain of EEG-based emotion recognition by introducing a high-performing, 

interpretable framework suitable for real-world applications while laying the foundation for future 

developments in adaptive neurofeedback systems and emotion-aware brain-computer interfaces. 
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I. INTRODUCTION 

Electric brain activity measured by EEG provides copious and direct information about the associated neural activity of emotion and, 

hence, is a far better choice than the other modalities [1]. Due to its high temporal resolution, EEG is especially apt for emotion 

detection in real time since the rapid changes in brain activity that characterize emotional processing are detectable [2]. Detection and 

decoding of emotional cues can have revolutionary implications in mental health, where psychological disorders like depression or 

worry could be detected at the earliest and timely intervention. In brain-computer systems, emotion detection can be used to tailor 

system attitude in response to the emotional condition of the user, enriching the human-computer interaction in communication 

devices, gaming, and cognitive enhancement systems [3]. In neurofeedback, emotion monitoring in real-time can be utilized to train 

the user in regulating emotional reactions, hence achieving improved general well-being. 

However, emotion detection accurately from EEG data is a highly demanding task since emotional responses are a nonlinear, highly 

variable, and subject-specific phenomenon. Various subjects might feel and express their emotion differently, and it might not always 

be possible to choose common brain activity patterns under a specific emotion in different subjects. Such subject-to-subject variation 

imposes a tremendous task on the emotion recognition problem. Raw EEG signals, as shown in Figure 1, also gets corrupted by noise 

and artifacts of various types, say, muscle activity blinks or even environmental noise, which distorts the signal's quality and adversely 

affects the classifier's performance. Hence, such problems need to be addressed effectively using robust preprocessor and feature 

extraction techniques so that the proper emotional signals can effectively be captured and analyzed. 

In recent years, the combination of deep learning models [4-5] and advanced signal processing techniques has been found to have 

great potential to enhance emotion detection systems. Methods such as the Continuous Wavelet Transform (CWT) [6] and Short-Time 

Fourier Transform (STFT) are commonly used to extract time-frequency representations of EEG signals, which are beneficial for 

capturing temporal and spectral information. These techniques convert the raw EEG data to a representation in which the content at 

any given instant is emphasized, thereby presenting a more informative brain activity image [7]. Time-frequency representations, 

through the use of the techniques of CWT and STFT, can present helpful information on the dynamic emotional conditions of 

subjects, and more accurate emotion detection can be achieved. However, efficient use of the features in enhancing the detection of 

emotion involves building advanced models that can operate on high-dimensional and complex data. Advanced models such as 

Convolutional Neural Networks (CNNs) [8] and Recurrent Neural Networks (RNNs) [9] are highly effective in the extraction of 

meaningful time-frequency representation patterns. However, it is not a simple task in real-world applications to build models that 

utilize both the temporal and spectral cues and handle individuality and noise simultaneously. Accordingly, advanced hybrid models 

using many deep models and signal processing techniques are needed to build more robust and accurate emotion detection systems. 

 

 
Figure 1. The signal channel raw EEG signal [10] 

 

 

A novel hybrid architecture composed of Convolutional Neural Networks (CNNs) and an Attention mechanism is presented, using the 

CWT and the PSD as parallel input to address this task. The CNN component can directly extract spatial cues from the time-frequency 

representations naturally, and the Attention mechanism allows the classifier to zero in on the most helpful input data parts and, 

therefore, increase its discriminative emotional cue extraction capabilities. We anticipate the hybrid architecture will utilize the 

feature-learning capabilities of CNNs and the context-aware capabilities of attention mechanisms to achieve more accurate emotion 

classification. 
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II. RELATED WORK 

The junction of deep learning methodologies and biomedical signal processing has progressed significantly over the last two years, 

enabling remarkable improvements in the automatic classification of intricate physiological signals. 

Liu et al. published a CNN-BiLSTM hybrid deep learning architecture augmented by DWT-based features for fetal acidosis detection 

[11]. Their proposed method, integrating spatial feature extraction by the CNN and temporal pattern detection by bi-directional long 

short-term memory (BiLSTM) networks, showed outstanding diagnostic performances compared to classical models. Integration of 

DWT in the feature pipeline also contributed significantly towards overcoming the issue of overfitting and enhancing the 

discriminatory power of the extracted features. This work emphasized the capabilities of hybrid models in efficiently removing the 

intrinsic coupled nonlinear processes in physiological time series, and they showed robust performances in the context of fetal 

monitoring. 

In 2023, a new theoretical work by Farag applied the DSP viewpoint to explain the traditional convolutional layers of the networks 

[12]. By conceptualizing the operations of the convolutions in the context of FIR filtering and continuous wavelet transforms (CWT), 

Farag established the mathematics that guides CNN action. This enhanced the explainability of deep learning models and opened the 

door to developing self-contained, computation-lean architectures tuned to get deployed in edge devices. It combined classical signal 

processing paradigms and contemporary deep learning models and thus enhanced the flexibility of CNN-based models in various use 

domains. 

The study's progress was also seen in the research work of Abdulwahhab et al. in 2024, where they presented a fusion of CNN and 

recurrent neural network (RNN) architecture in detecting epileptic seizures from EEG data [13]. Their two-pathway approach applied 

both raw sequences of the EEG and time-frequency representation of the sequences by utilizing STFT and CWT transformations. 

Using the multi-scale feature representation, the model realized high-performing classifier accuracies of more than 99%, indicating the 

robustness of integrating spectral and temporal analysis in a single framework. The paper emphasized the revolutionary contributions 

of deep feature fusion techniques in enhancing the validity of the diagnosis of neurological diseases. 

Du et al. went one step beyond by introducing a light feature extraction network, the CWT-AM-CNN, for spectral aero-engine 

infrared categorization [14]. With the utilization of a peak-finding mechanism in the continuous wave transformation domain and self-

attention mechanism, the method of Du et al. learned discriminative spectral features of diverse engines in a time-efficient manner. 

The proposed approach ensured both high accuracy and computation efficiency, and thus, it holds high practicability in real-world 

industrial scenarios, where quick inference is of top priority. 

Similarly, Sun et al. proposed a new multi-feature fusion attentional neural network to recognize epileptic EEG signals [15]. They 

combined the Hilbert spectrum (HS) analysis and the grayscale recurrence plots (GRP) to effectively capture the time-frequency and 

the nonlinear dynamic behavior of the EEG signals. The subsequent use of a self-attention mechanism enabled dynamic weighting of 

diverse sets of features, once more enhancing the expressive power and discriminability of the model. Sun et al.'s findings witnessed 

the use of multi-domain feature extraction capabilities and advanced attention mechanisms despite heterogeneity and noise in the EEG 

data. 

Masad et al. also examined the stage classification of sleep using a CNN-based method that converted the epochs of the EEG into 

time-frequency images before classifying them [16]. Their method recorded outstanding levels of accuracy above 99%, supporting the 

use of convolutional architectures in the task of EEG-based pattern recognition. Of interest was that their method proved robust and 

reliable across various EEG channels, providing flexibility and robustness for use in clinical sleep medicine scenarios. 

Expanding the scope of cardiovascular diagnostics, Berrahou et al. (2025) proposed a hybrid AI arrhythmia forecast model based on 

Higuchi's fractal dimension analysis, RR-interval properties, and attention-based CNN [17]. This hybrid approach efficiently 

combined the morphological and temporal properties of the ECG signal in a way that allowed the model to produce high precision in 

the complex scenario of the inter-patient classification problem. Their study emphasized the removal of class imbalances and dataset 

heterogeneity, and the derived models generalize and operate effectively in a broad set of clinical situations. 

These studies collectively indicate more advanced hybrid models, which integrate the complementary capabilities of CNNs, RNNs, 

and attention mechanisms. While contemporary models achieve high levels of accuracy under controlled conditions, a series of 

challenges persist, including narrow generalizability to noisy real-world data and high-complexity architecture computational 

overheads. Overdependence on preprocessing pipelines can also hamper the solution's scalability. Building on the above insights, 

research in the current study extends a next-generation hybrid architecture, blending CNN, LSTM, attention mechanisms, and dual 

CWT and STFT feature extraction streams. By probing the context of adaptive feature fusion and optimization in accuracy and 

computational cost, the research seeks to bridge present gaps and facilitate the practical applicability of EEG-based classifier systems 

in emotional state recognition. 

III. METHODOLOGY 

A. SEED-IV Dataset 

SEED-IV is a multimodal dataset established by Shanghai Jiao Tong University's Brain and Cognitive Science Lab (BCMI) to study 

emotion recognition [18]. It includes 15 subjects and three sessions per subject, 24 trials per session, and 1,080 trials. Trials are evenly 

distributed over four emotion categories: happy, sad, fearful, and neutral, as shown in Figure. 2. In a trial, subjects viewed movie clips 

selected to evoke specific emotions. At the same time, a 62-channel ESI NeuroScan System captured the EEG data at a sampling rate 
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of 1000 and the eye movement data using SMI eye-tracking glasses. SEED-IV is a valuable contribution to developing practical 

computing and brain-computer interface research. 

 

 
Figure 2. EEG acquisition experimental process [19] 

B. Proposed Model 

1. Overview 

The method proposed in Figure 3 is a deep learning approach incorporating ResNet-18, LSTM, and attention mechanisms to boost 

feature representation and classification accuracy. It begins with two primary pipelines of feature extraction: ResNet 18-Att, which 

uses a CNN coupled with an attention mechanism to highlight useful spatial features, and LSTM-SR, which processes ordering data 

by passing it to the LSTM network. These are then boosted by two specialized modules, i.e., LSTM-SE, which uses a Squeeze-and-

Excitation (SE) mechanism to normalize the feature weights, and ResNet18-Att, which boosts spatial features using attention 

mechanisms. The two pipelines are feature-fused using the Adaptive Feature Fusion method, allowing the model to merge the salient 

information before final classification. 

 

 
 

Figure 3. Proposed Model 
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2. Pre-processing 

For pre-processing of the SEED-IV dataset, the raw EEG data of the 3 selected channels, Fp1, Fp2, and Fz, have been used since they 

are of maximum use in emotional processing. These data were initially band-pass filtered in the 1-75 Hz frequency band to remove 

unwanted artifacts and noise, preserving the brainwave frequencies responsible for the emotional responses. These trials, which were 

240 seconds or 4 minutes, were partitioned into 4 overlapping pieces with 60 seconds each. Such segmentation helps process the 

brain's activity in shorter durations to detect dynamic changes due to emotional stimuli. Overlapping pieces (50% overlap) will enable 

temporal continuity and sufficient data points available to detect the features by extraction. After pre-processing, the data will be 

examined using feature extraction techniques, viz., Continuous Wavelet Transform (CWT) and Power Spectral Density (PSD), to 

detect spectral-temporal features and power distribution in different frequency bands, respectively. 

The four emotion labels in the dataset are Neutral, Happiness, Sadness, and Fear. Each label has 270 trials, each corresponding to an 

emotional stimulus. There are 3 channels and 4 overlapping parts per trial, so the parts per label are 3,240. In total, the four labels 

contain 12,960 samples or segments. This pre-processing prepares the dataset for analysis and the subsequent building of the model. 

 

C. Feature extraction  

1. Continuous Wavelet Transform 

The Continuous Wavelet Transform (CWT) is applied to the segmented EEG data to capture spectral and temporal properties [20]. 

CWT provides a time-frequency representation of the signal wherein the transient and the brain's oscillatory activity can be examined, 

which is important in emotional response analysis. CWT is applied by convolving the signal using a wavelet function that scales and 

shifts in the data. Converting the signal's frequency components over time details the evolving frequency bands as they progress along 

the trial. 

CWT is computed in the preprocessing pipeline on each 60-second chunk of the EEG signal. A sliding window approach is used, 

where a window of one second is slid over the trial chunk, obtaining a total of 60 windows per trial. These windows have 1,000 

samples based on the 1,000 Hz per second sampling rate. Morlet wavelet is typically favored, as it offers a good compromise between 

time and frequency localization. The CWT formula is provided mathematically as: 

     (   )   
 

√| |
  ∫   ( )

  

  

    (
   

 
)                              ( )      

Where a and b are scale and translation, respectively, x(t) is the EEG signal, and ψ is the mother wavelet 

The result of the CWT is the scalogram, a time-frequency representation of a 2D plot with time along the x-axis, frequency or scale 

along the y-axis, and amplitude of wavelet coefficient as color value. One scalogram result, one per epoch of the time period of 60 sec 

and of dimension 77 × 60 (60-time points and 77 frequency bands), is produced, enabling a high-resolution view of the spectral-

temporal features of the EEG signal. This scalogram is a visual representation of the EEG signal in the guise of an image and is 

readily available to use in the subsequent feature extraction and classification analysis. 

2. Power Spectral Density  

Power Spectral Density (PSD) is a transformation method applied to the segmented EEG data to study the power distribution in the 

signal across the different bands of frequencies [21]. PSD provides details on the power distribution of the EEG signal in the different 

frequency components under study, and it helps identify the emotional state or cognitive process in question. PSD, in contrast to the 

Continuous Wavelet Transform (CWT), which provides time-frequency graphical plots, PSD is more focused on the measurement of 

the power in the specific bands of frequencies, i.e., delta, theta, alpha, beta, and gamma, commonly applied in the cognitive process 

and EEG analysis. 

The PSD is calculated per 60-second segmented EEG signal during the preprocessing pipeline. One of the steps is to apply the Fourier 

Transform to every one of the segments to convert the time-domain signal to the frequency domain. This deconstructs the signal to its 

respective frequencies. Subsequently, the Welch method is typically applied to estimate the power spectral density. This involves 

partitioning the signal into overlapping sections, using a windowing function (in the present case, the Hamming window), and 

averaging periodograms to keep the variance low and produce a smooth spectral power estimate. 
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The formula of PSD is mathematically given as: 

   ( )     
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The derived PSD thus presents a 1D representation of the signal's power distribution as a function of the different frequencies. Power 

distribution is typically plotted across the traditional frequency bands (i.e., delta, theta, alpha, and beta) and can be used to demarcate 

the brain activity's intensity at different frequencies, typically referring to emotional/affective or cognitive workload states. 

Following the computation of the PSD of all segments, the frequency domain features thus extracted are applied in the analysis and 

the classification. The outcome of the transformation is a vector of power levels in different frequency bands. Power levels are 

valuable features in the ensuing classification models in detecting emotional states or cognitive processes. 

D. ResNet 18  

ResNet-18, a deep residual family member, is a strong deep convolutional neural network architecture that is extensively found to 

work efficiently in the task of hierarchical feature extraction of highly intricate biomedical signals, like in the situation of EEG. 

ResNet architectures, which were initially put forward by He et al., address the notorious problem of the vanishing gradient standard 

in deep networks by providing identity-based skip connections, hence facilitating the backpropagation of the gradient easily in deep 

layers. In the present study, ResNet-18 serves as a building block in the feature extraction module so that the model can learn the 

discriminative representation of the time-frequency images formed through Continuous Wavelet Transform (CWT). 

ResNet-18 comprises 18 weighted layers structured in convolutional blocks alternated by batch normalization and rectified linear unit 

(ReLU) activations [22]. Convolutional blocks consist of a residual connection that bypasses the transformation layers so the network 

can learn residual mappings, not direct feature transformations. This addresses the degradation problem of multi-layer networks; 

whereby additional layers tend to cause the performance to saturate or decrease [23]. 

For emotion recognition using EEG, ResNet-18 retains several distinct advantages. First, its relatively lightweight framework balances 

computation efficiency. It does not compromise the depth of abstraction of the features due to the high-dimensional spectrogram and 

scalogram outputs of the EEG data. Second, the residual connections facilitate the ease of learning low- and high-level abstractions 

and the detection of minute neurophysiological characteristics of diverse emotional states by the model. Third, pre-training the 

network using large-scale databases and fine-tuning the EEG dataset yields the benefits of transfer learning, including improved 

convergence and generalization. 

In this work, ResNet-18 was implemented carefully in the presented hybrid architecture, which receives time-frequency 

representations and yields spatial features necessary for further classification. Subsequently, the feature maps generated by ResNet-18 

are fed through attention modules and sequential models such as LSTM layers to capture both the spatial hierarchies and the temporal 

relations of the EEG data. Integration in this manner ensures that the ResNet-18 module facilitates robust feature learning, general 

explain ability, and the system's performance. 

Besides, extensive empirical experiments verified the efficacy of ResNet-18 in the hybrid system. Its architecture outperformed in 

discriminative feature extraction of various emotional classes, thereby verifying its core role in the system. Its ability to efficiently 

handle the input of the CWT validates its versatility for use in different spectral representations, making it a core building block in the 

proposed emotion recognition pipeline. 

E. Attention Module (Att)  

Integrating the attention mechanisms into our deep learning architecture further enhanced the ability of the model to capture and 

utilize EEG signal representations of emotion. Building on the high quality of feature extraction of ResNet18, the proposed Att 

module intensifies these representations selectively to highlight emotion-relevant features in the EEG signal, as shown in Figure. 4. In 

our hybrid architecture, the Att module follows directly after the ResNet18 feature extractor, operating on the dense frequential and 

temporal representations of ResNet18's learned CWT-based scalogram. The figures show that the ResNet18 feature maps are passed 

directly to the Att module to sharpen its representations. 

The self-attention design is replaced by using the convolutional in the attention module. Specifically, the module includes two 2D 

CNN layers, followed by ReLU activation functions. Using this convolutional architecture, the module learns spatial features in the 

emotion-relevant feature maps of the input data. These CNN-ReLU layers' outputs are passed through a sigmoid activation function, 

generating attention weights ranging from 0 to 1 for every element in the feature map. These attention weights are element-wise 

multiplied by the initial ResNet18 feature map, effectively weighing the different spatial locations in the representation by scaling 
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their importance. This multiplication step emphasizes the salient areas of the representation and under-emphasizes the less informative 

areas, generating a more enhanced feature representation that better captures the implicit emotional states in the given EEG data. 

This selective weighting is of particular utility in emotion recognition using EEG, in which the discriminative signal features tend to 

be irregularly distributed both in time and the frequency domain. By weighing informative segments more and minimizing noise and 

artifacts characteristic of the EEG data, the attention module outputs more discriminative representations. In addition to the gain in 

performance, the attention module greatly helps interpret the model. By visualizing learned attention weights, we can identify areas of 

the feature maps that are informative to the predictions and distill informative insights mapping computational outcomes to the 

neurophysiological models of emotion processing. 

 

Figure 4. ResNet 18 - Attention Module  

 

F. LSTM  

Long Short-Term Memory (LSTM), a variant of the recurrent neural network (RNN), has proved highly effective in modeling 

temporal relations in sequence data [24]. Initially proposed by Hochreiter and Schmidhuber in response to the exploding and 

vanishing gradient problems of the traditional RNN, the LSTM networks utilize a novel memory cell design and the use of gating 

mechanisms enabling the selective forgetting and remembering of data during the progression of long-term time intervals. These 

attributes have made LSTM highly applicable as a method of processing medical, non-linear, and non-stationary signals, such as the 

EEG, in which time dynamics are critical in distinguishing different emotional or cognitive states. 

In the proposed hybrid architecture, the LSTM module plays the base temporal feature extractor role to identify the dynamic patterns 

in the sequential EEG data. After the ResNet-18 module extracts the spatial features of the time-frequency representations, the spatial 

features are reshaped to temporal sequences and fed to the LSTM layer. Due to the temporal modeling ability of LSTM, the network is 

in a position to capture the nuanced temporal relationships typical of transient emotional expressions in the EEG signal. 

Structurally, there are three primary gates in the LSTM module: the input gate, the forget gate, and the output gate. The input gate 

regulates the flow of new data into the memory cell, the forget gate determines data to discard in the cell state, and the output gate 

regulates the data flow to the subsequent layers. This gating provides the LSTM the ability to weigh the preservation of useful past 

information and learning new temporal information and also aids the generalizing ability of the model in different time scales. 

Furthermore, the use of LSTM in this context is not restricted to a one-way architecture. To capture a more comprehensive temporal 

context, the architecture employs a bidirectional LSTM (BiLSTM) setup, in which the sequence data is fed in both the forward and the 

backward directions. This double-pronged method ensures that the network will capture past and future relations in the EEG signal, 

portraying a more accurate picture of the temporal processes underpinning emotional state. 

Briefly, the LSTM module deepens the temporal dimension of the feature representations and narrows the gap between static spatial 

features and dynamic temporal patterns. Its integration into the hybrid system assures the system's handling of complex EEG data, 

resulting in more accurate and reliable emotion recognition results. 

G. Sequence-extraction Module (SE)  

The Sequence-extraction Module (SE) is one of the primary elements of our proposed hybrid architecture [25]. It is specifically 

tailored to refine the model's ability to extract and structure sequential dependencies in the EEG data. Because the EEG data are time 

series, and emotional processes emerge dynamically in time, effective extraction and representation of sequential dependencies are of 

the highest priority to ensure accurate and reliable emotion detection. 

As indicated in the architecture illustration, the SE module receives the input features of the LSTM network and processes them in a 

thoughtfully structured method, as shown in Figure. 5. The module involves a highly advanced processing pipeline composed of five 

significant components operating in a stepwise manner: 
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Global Adaptive Pooling: The initial block (in magenta in the figure above) performs global adaptive pooling on the LSTM outputs, 

compressing temporal data while preserving the primary details along the time axis. It effectively reduces the dimensionality while 

maintaining the necessary emotional content of the signal. 

FC Layer: Following the pooling, the features pass through a fully connected layer (light pink) that transforms the pooled features into 

a shape suitable for attention weighting. 

ReLU Activation: In the third block (green), we apply the Rectified Linear Unit (ReLU) activation, which provides the flow of 

processing with a degree of non-linearity and makes the system more competent in learning complicated data patterns. 

Second FC Layer: This second fully connected layer (light yellow) further processes the feature representation and transforms it into a 

space to compute the attention weights. 

Sigmoid Activation: The final block (yellow) employs the sigmoid activation function to map the outputs to attention weights between 

0 and 1. These weights indicate the importance of the different features in the original LSTM's output. 

Attention is implemented by the multiplication operation (⊗) in the above figure, in which the sigmoid-activated weights are element-

wise multiplied by the initial LSTM features. This weighting enables the model to highlight the EEG signal's more informative 

regions and ignore the signal's redundant parts. 

The SE module contains a "Scale" component following attention weighting, which scales the attention-weighted features. It finishes 

by summing the scaled attention-weighted and input features using an element-wise addition operation (⊕). It uses a residual 

connection to enable the info flow and the backdrop during the training. 

Empirical experiments in the present study revealed that including the Sequence-extraction Module contributed considerably to 

enhancing the hybrid model's performance. Experiments in comparative settings revealed models utilizing SE performing better than 

models not using the module under conditions where emotional alterations are subtle or in the presence of noisy signal conditions. The 

module's ability to extract and highlight time-related features was crucial in achieving robust classification outcomes across various 

emotional states. 

 
 

Figure 5. LSTM-Sequence-extraction Module  
 

In addition, the SE module makes the system more interpretable by defining the time intervals most influential in emotion recognition. 

Analyzing the attention weights generated by the sigmoid activation makes it easier to understand the temporal patterns given more 

attention, revealing the emotional processing processes modeled by the model. 

In summary, the Sequence-extraction Module is a crucial component of the temporal processing pipeline of the proposed framework. 

By its sequential Global Adaptive Pooling, FC layers, and ReLU and Sigmoid activations, the SE module achieves a highly effective 

attention mechanism that allows the model to extract the most informative temporal features of the EEG signals to detect emotions. 

Such a capability is essential in achieving enhanced accuracy, robustness, and explain ability of the EEG-based emotion recognition 

systems and moving the model towards practical use in affective computing systems. 

 

IV. RESULTS 

 
The hybrid model's performance is extensively displayed using three pertinent performance measures: the classification report table, 

confusion matrix, ROC curve, and AUC measure. These measures present essential information about the model's potential for 

classifying emotional states as Natural, Sad, Fear, and Happy with high precision and reliability. 

The performance of the proposed hybrid model is presented in Table I and Figure. 6. The four emotion classes exhibit robust and 

uniform performance in the classification table. In particular, Natural enjoys the highest precision of 95% and recall of 93%, for an 

F1-score of 94%, demonstrating the model being highly consistent and confident in classifying the natural expressions. Sad ranks a 

close second at a precision of 94%, recall of 93%, and an F1-score of 94%, demonstrating that the model is somewhat less precise in 

identifying sadness but is consistent in the same measure. Fear and Happiness register precision and recall of approximately 91–93%, 
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and the F1-scores register at 92%, demonstrating somewhat more variation in the classification than the other sentiments. Overall, 

when the average of the entire set of classes is calculated, the macro-average precision is at 93%, the recall is at 92.5%, and the F1-

score is at 93%, demonstrating a stable and generalized performance in the absence of any skewed tendencies toward a specific 

emotion. 

These indicate the accuracy and balance at which the model classifies correct and incorrect positives and negatives—important in 

emotion recognition experiments in which misclassifications give rise to mistyping of affective states. 

 

TABLE I.  EVALUATION MEASURES 

labels Precision Recall F1-score Accuracy 

Natural 95% 93% 94% 

93% 

Sad 94% 93% 94% 

Fear 92% 92% 92% 

Happy 91% 93% 92% 

All 93% 92.5% 93% 

 

 

Figure 6. Performance analysis  

 

 

Figure 7 Confusion matrix provides visibility of the per-class distribution of the classification results. It shows good diagonal 

dominance, where 298 Natural, 301 Sad, 300 Fear, and 302 Happy are classified correctly out of 324 per class. Misclassifications are 

minimal and typically occur amongst similar or next-in-category emotion types. Natural, for example, is likely to be misclassified as 

Sad (15 errors), perhaps due to the similarities in facial or physiological cues. Fear is sometimes mistaken as Sad or Neutral (10 errors 

in both cases), perhaps reflecting the ambiguity of the emotional cues in the real-world situation. Happy, in all its relative 

discriminability, is misclassified in 8–9 errors in other categories―still a narrow margin in the context of the overall correctness of the 

system. This matrix provides not only the statistical high-performing status of the system but also its correct intuition of emotional 

similarities, and hence, it is sufficient for use in real-time emotional analysis in real-world scenarios. 

Precision

Recall

F1-score

88%

90%

92%

94%

96%

Natural
Sad

Fear
Happy

All

Performance 

88%-90% 90%-92% 92%-94% 94%-96%
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Figure 7. Confusion matrix 

Figure 8 presents the AUC of the hybrid model. The hybrid model's ROC curve is indicated by a high AUC value of 0.94, 

demonstrating the high discriminatory power of the model. An AUC measures the model's discriminatory power in separating the two 

classes—values close to 1 indicate high performance. An AUC of 0.94 implies the ability of the model to rank the positive instances 

above the negative instances consistently, regardless of the emotion class, as needed in use scenarios where the decision boundary 

might vary. This high AUC also reflects the model's resilience under scenarios of imbalanced data or different noise levels, common 

in affective computing paradigms (e.g., EEG or image-based emotion detection). 

 

Figure 8. ROC of the hybrid model 

V. CONCLUSION 

This study presents a novel hybrid deep learning framework for EEG-based emotion recognition, which integrates ResNet-18, LSTM, 

and attention mechanisms, complemented by parallel feature extraction pathways utilizing Continuous Wavelet Transform (CWT) and 

Power Spectral Density (PSD). By systematically combining spatial feature extraction through ResNet-18, temporal dynamics 

modeling with LSTM, and selective emphasis on salient information via attention modules, the architecture captures the complex, 

non-stationary patterns inherent in EEG signals related to emotional states. The incorporation of the Sequence-extraction Module (SE) 

further refines temporal dependencies, allowing for accurate classification of transient and evolving emotional cues. 
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Empirical results from the SEED-IV dataset demonstrate the efficacy of the proposed model, achieving high precision, recall, and F1 

Scores across four emotional categories: Natural, Sad, Fear, and Happy. The hybrid model reached an overall macro-average F1 Score 

of 93% and an AUC of 0.94, indicating robust generalization even amidst inter-class ambiguities and signal noise. Validation through 

the confusion matrix revealed minimal misclassifications and high accuracy across all emotional classes. 

In addition to quantitative performance, the architecture provides significant interpretability benefits. Visualization of attention 

weights and sequence extraction activations offers insights into the temporal and spectral regions of EEG signals most indicative of 

emotional states. This interpretability enhances model transparency and aligns computational findings with neuroscientific theories of 

emotion processing, fostering confidence in real-world applications. 

While substantial advancements have been achieved, opportunities for future exploration remain. Expanding the model to incorporate 

multi-modal inputs, such as facial expressions or physiological signals, could enhance emotion recognition accuracy. Additionally, 

exploring domain adaptation techniques would improve generalizability across diverse populations and recording conditions, which 

would be instrumental for clinical applications. Optimizing the model for real-time processing also presents the potential for 

deployment in practical brain-computer interface systems and affective computing platforms. 

In conclusion, the proposed hybrid model significantly advances EEG-based emotion recognition, offering a robust, interpretable, and 

high-performing solution. Its effective integration of multi-scale feature extraction and advanced deep learning techniques makes it a 

promising candidate for future research and applications in affective computing and neurotechnology. 
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