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Received: Jun. 22, 2025 Alzheimer’s Disease is a degenerative brain disorder that progressively impairs cognitive functions,
Revised: Aug. 29, 2025 particularly memory, and poses a significant burden on individuals and healthcare systems worldwide.

Timely and accurate diagnosis of AD in its early stages is crucial to enable effective interventions and
support patient care. Traditional diagnostic approaches often rely on either structural brain imaging or
clinical evaluation, yet using one modality in isolation limits the ability to capture the complexity of the
disease. This study introduces a multimodal deep learning framework designed to integrate structural
Magnetic Resonance Imaging (MRI) with comprehensive clinical data for early detection of AD. The
proposed system employs a three-dimensional convolutional neural network (3D-CNN) to analyze
volumetric MRI scans and a multi-layer perceptron (MLP) to process structured clinical features. To
enhance representational learning, the model applies an attention-based fusion strategy, including
Transformer mechanisms, which enable it to focus on the most relevant modality-specific features.
Furthermore, an ensemble learning approach combines the predictions of the individual modalities and the
multimodal fusion branch, significantly improving the overall diagnostic performance. While the
framework's proof-of-concept validation was conducted on a simulated dataset, the results demonstrate a
high degree of accuracy and offer a strong basis for its application to real-world clinical data. We
demonstrate that our ensemble model achieves a superior accuracy of 97.0% and an AUC of 0.985,
outperforming unimodal and non-attentive multimodal baselines. The framework's explain ability,
highlighted by Grad-CAM and SHAP, offers valuable insights into the model's decision-making process,
a critical step towards its clinical acceptance.
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I. INTRODUCTION

Alzheimer's disease (AD), a progressive and irreversible neurological condition, severely reduces cognitive function, particularly
memory, and is rapidly becoming a major global health issue [1]. Due to AD's covert progression, mental capacities gradually erode,
resulting in dementia and a significant reduction in the quality of life for patients and their loved ones. As the world's population ages,
the incidence of AD is predicted to increase significantly, placing a significant burden on caregivers and healthcare systems [2]. There
is currently no effective treatment for Alzheimer's disease, despite extensive research, underscoring the urgent need for innovative
methods of early diagnosis and illness management [3].
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Better patient outcomes and prompt therapies are made possible by early identification of AD. It is possible to offer supportive care,
alter lifestyle choices, and possibly participate in clinical trials for novel medicines when diseases are discovered early [4].
Furthermore, the formation of accurate diagnoses using traditional approaches is inadequate due to the complexity of early-stage
symptoms and the variability of Alzheimer's disease pathology. Therefore, a crucial component of current Alzheimer's disease
research is the use of complex computer models that may combine a variety of biological data.

Furthermore, even when cognitive ability is mostly unaffected, early detection empowers patients and their families to make well-
informed decisions about financial matters, legal matters, and care planning [5]. Several researches using machine learning techniques
have produced promising results for the use of clinical data in the early detection of Alzheimer's disease [6,7]. Traditional diagnostic
techniques, such as clinical evaluations and structural magnetic resonance imaging (MRI), rely mostly on single data modalities. Deep
learning (DL), in particular, has recently advanced in artificial intelligence, opening up new possibilities for combining different data
sources to improve diagnostic accuracy [8].

In order to diagnose Alzheimer's disease, recent studies have looked into multimodal deep learning approaches that combine structural
MRI with other clinical characteristics. The data types that were gathered, the DL architectures that were used, and the reported
classification performance are all displayed in Table 1, which compares a few chosen experiments. Anomalies can be detected with
high accuracy (up to 98%) using hybrid models, like the DBSCAN-GWO model, which combines clustering and optimization
techniques, according to recent advancements in 10T security. This demonstrates how adaptable unsupervised methods may improve
diagnosis, particularly in the detection of Alzheimer's disease [9].

The use of deep learning models to combine clinical and structural MRI data for Alzheimer's disease classification has been the
subject of numerous studies. One approach combined basic clinical testing, such as demographics, memory tests, and balance scores,
with structural MRI. With fully connected layers and attention techniques, a CNN-based architecture achieved a high classification
accuracy of 96.88% [10]. An alternative approach employed a temporal deep learning architecture that integrated structural MRI data,
cognitive tests, and biochemical markers using an LSTM module and a 3D convolutional neural network. With a 92.65% accuracy
rate, this method yielded positive classification results [11]. In a different study, researchers used MRI segmentation data along with
extensive clinical and psychological datasets to build an ensemble model using Random Forest classifiers. In a diagnostic scenario
with five classes, the system demonstrated an exceptional accuracy of 98.81% [12].

An earlier study looked at similar input types, but self-attention and cross-modal attention processes were added to enhance the
integration of data from many modalities. The model's accuracy of 96.88% remained constant despite the architecture changes. This
demonstrates the significance of attention-based strategies [13]. One model connected genetic information (such APOE status) with
cognitive scores using a combination of CNNs and autoencoders. The type and variety of input features may have contributed to the
performance's middling accuracy of 81.0% [14]. Another approach leveraged a broader set of multimodal data, including imaging,
(EHR), and genomic SNP information. A hybrid modeling strategy incorporating deep neural networks, Random Forests, and SVMs
was utilized, resulting in a relatively lower accuracy of 79.0% [15]. And other researchers used MRI data from ADNI, OA-SIS, and
Kaggle, along with clinical data, making it distinct from prior works that focused solely on imaging. A range of deep learning models
were employed—including ResNet, VGG, AlexNet, EfficientNetB7, GoogleLeNet, RNN, LSTM, GRU, Autoencoders, and DBNs—
achieving high accuracy depending on the model and dataset, although no single unified accuracy value was reported [16].

Our central hypothesis is that a multimodal deep learning framework, integrating attention mechanisms and ensemble learning, will
significantly outperform unimodal and non-attentive multimodal baselines in the early detection of Alzheimer's disease. The
theoretical basis for this approach lies in the complementary nature of the data: MRI captures the physical and structural changes in
the brain, while clinical data provides a profile of the patient's functional and genetic state. By combining these, the model can form a
more holistic and robust diagnostic judgment.

TABLE I. Summary of Existing Research on Multimodal DL for Alzheimer's Disease Detection.

Clinical Data Deep Learning

Paper MRI Data T i
ape ata Type Incorporated Architecture

Accuracy

Demographics,
10 Structural Memory Tests, CNN, FC, Attention 96.88%
Balance Scores

Demographics,
Cognitive
Scores,
Biomarkers

11 Structural 3D CNN + LSTM 92.65%
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Clinical,

. Random Forest 98.81%
12 Structural Psychological, MRI ancom Fores °
. (Ensemble) (5-class)
Segmentation
Demographics, CNN, FC, Self-
13 Structural Memory Tests, Attention, Cross-Modal 96.88%
Balance Scores Attention
Demographics,
1 Structural Cognitive _ CNN, Autoencoders, 81.0%
Scores, Genetic Ensemble
Data
i 0,
Imaglng, EHR, Deep Neural Networks, 79'0./0
15 Structural Genomic SNP Random Forests. SVM (Imaging
Data ’ + EHR)
CNN-based and
Yes (Clinical recurrent models (e.g between
g 0
16 Structural data included) ResNet, VGG, LSTM, 838/093/:(1
GRU, AE, DBN) D
Age, MMSE, 3D-CNN + MLP +
Proposed (MDL) Structural CDR, APOE4, Transformer Attention + 97.0%, AUC
Education Ensemble

I1. MATERIALS AND METHODS

A. Dataset Description

The study's dataset is made up of publicly accessible structural MRI images and related clinical information. The main attributes
of the data sources and modalities that comprise the model are listed in Table 1. The suggested multimodal deep learning method for
early Alzheimer's disease diagnosis can be trained and evaluated on a number of publicly accessible datasets. The Alzheimer's Disease
Neuroimaging Initiative (ADNI), a large longitudinal study that includes people with Alzheimer's disease, people with moderate
cognitive impairment (MCI), and people who are cognitively normal, has thousands of participants who have contributed a wealth of
data [18]. Biomarkers derived from blood and cerebrospinal fluid, structural and functional MRI scans, PET scans (amyloid, tau, and
FDG), comprehensive genetic data (including APOE genotype and whole genome sequencing for a subset), and comprehensive
clinical and cognitive evaluations carried out over a number of time points are all included in the dataset [17]. Signing a Data Use
Agreement (DUA) and registering on the LONI age and Data Archive (IDA) website are prerequisites for accessing ADNI data [18].
Some brain MRI datasets are publicly available through the Open Access Series of Imaging Studies (OASIS) [19]. The cross-sectional
MRI scans of people in different age groups, including young, middle-aged, and older people with and without Alzheimer's disease,
are displayed in the OASIS-1 dataset. OASIS-2, on the other hand, has a longitudinal dataset that is only for older people, even those
who don't have dementia.

OASIS-3 adds to a large, multimodal dataset that contains clinical, cognitive, and biological data from a wide range of patients, as
well as MRI and PET scans taken throughout time. OASIS-4, on the other hand, looks at a clinical group of people who have memory
issues utilizing a mix of biomarkers, clinical and cognitive assessments, and MRI. You usually have to sign up to get to these datasets
through the NITRC-IR platform or the official OASIS website [20]. Another notable long-term resource is the MIRIAD (Minimum
Interval Magnetic Resonance Imaging in Alzheimer's Disease) dataset. It uses T1-weighted volumetric MRI scans of healthy people
obtained at regular times and scans of those with mild to moderate Alzheimer's disease. One thing that makes the MIRIAD project
stand out is that the scanning conditions are always the same. This implies that the same scanner and protocols are used for all imaging
sessions. Scores from the Mini-Mental State Examination (MMSE) and other clinical markers are also included [21]. Researchers can
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apply to the program by signing up on its own website [22]. The AIBL (Australian Pioneering Imaging, Biomarkers and Lifestyles in
Ageing) collection also has a lot of long-term data [23]. A large group of older persons had MRI and PET scans with PiB, blood-based
biomarkers, genetic data, and rigorous clinical and cognitive tests [24]. The ADNI infrastructure makes this collection available, and
the LONI IDA registration platform controls who can see it [25]. The best dataset depends on the goals of the study and the imaging
and non-imaging methods needed for the multi-modal deep learning application

TABLE I1. Summary of the Datasets Used in This Study.

Clinical Features Imaging Modality Dataset Source
Age, MMSE, CDR, Education, APOE genotype, Diagnosis T1-weighted MRI, fMRI, PET ADNI
Age, Sex, MMSE, CDR, Genetic Data, Cognitive Scores T1-weighted MRI, DTI, fMRI OASIS-3

B. Data Preprocessing

To prepare the data for training and evaluation, both imaging and clinical modalities underwent structured preprocessing
procedures. For the imaging data, three-dimensional brain MRI volumes were simulated and saved in NIfTI format. Each volume was
resized to a uniform dimension of 64 x 64 x 64 voxels using trilinear interpolation, ensuring compatibility with the convolutional
input layers of the model. Following resizing, each volume was normalized to have zero mean and unit variance to stabilize the
learning process and ensure consistency across samples [26].

For the clinical data, a synthetic dataset was constructed containing demographic and cognitive features such as age, MMSE scores,
CDR, education level, and APOE4 genetic status. Missing values were not present in the simulated setup; however, in real-world
scenarios, imputation strategies would be employed. All clinical features were scaled to maintain a comparable numerical range and
were encoded into a PyTorch tensor format for direct use in training [27]. The dataset class was structured to align clinical records
with corresponding MRI volumes using subject identifiers. Labels for classification were mapped to numerical categories: (CN),
(MCI), and Alzheimer’s disease (AD), represented by the values 0, 1, and 2, respectively. Each training sample consisted of a paired
MRI volume and clinical feature vector, along with the associated label, allowing the multimodal model to learn from both structural
and contextual information simultaneously [28].

As shown in Figurel, both imaging and clinical data underwent structured preprocessing steps to ensure model compatibility.

Imaging Clinical
2 2 [ B
(NIFTI format)
L J . _J
" l e a l ™~
Resizing (64 < 64 x< 64) Scaling
= l = ¢ =
Normalization ( Encoding
. I J @ I J
F Dataset
(Paired MRI volurne and clinical feature vector)
Label mapping: CN =0, MCI =1, AD =2 )

Figure 1. Multimodal data preprocessing pipeline for MRI and clinical features

C. Model Architecture

The proposed multimodal deep learning system is designed to handle imaging and clinical data independently in two parallel
branches. A 3D Convolutional Neural Network (3D-CNN) was utilized to extract spatial attributes from preprocessed T1-weighted
MRI volumes. In the CNN architecture, three convolutional blocks with ReLU activations and max-pooling layers were followed by a
flattening layer and a fully linked dense layer [29]. A Multilayer Perceptron (MLP) analyzed tabular clinical data, including
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demographics (age, sex), fluid biomarkers, genetic markers (APOE status), cognitive scores (MMSE, MoCA), and demographic
information Each of the two hidden layers in the MLP branch uses ReLU activation algorithms and dropout regularization [30]. The
feature representations from the two network branches were combined using an attention-based fusion technique. Blending
information sources more successfully was made easy by this system's capacity to understand how much attention each pattern
required. The resulting joint representation was then passed via a dense output layer using SoftMax activation in order to achieve
binary classification between AD and non-AD occurrences [31]. The idea for this architecture is predicated on the complementing
characteristics of its individual components. Convolutional neural networks are particularly well-suited for extracting local and global
spatial properties from volumetric brain imaging data [30], whereas multilayer perceptron (MLPs) provide adaptability in modeling
complicated clinical aspects [32]. In the medical domain, it has also been shown that the addition of the attention mechanism improves
the interpretability and classification accuracy of multimodal models [33].

e
T1-weighted Transformer
MRI attention
—
Clinical
Data

Figure 2. Multimodal model combining 3D-CNN for MRI and MLP for clinical data with attention-based fusion for AD prediction

D. Training Strategy

The model was trained and evaluated using a five-fold stratified cross-validation approach to ensure robust and generalizable
results. The dataset was divided into five equally sized subsets, preserving the distribution of diagnostic classes (CN, MCI, AD) across
all folds. In each iteration, four folds were used for training and one-fold for validation [34]. The model was trained for five epochs
per fold using the Adam optimizer with a fixed learning rate of 0.0001 and a batch size of 4. Cross-entropy loss was employed as the
objective function. Training was conducted on GPU-enabled hardware when available, and gradients were backpropagated through
both the 3D-CNN and MLP branches simultaneously. The attention-based fusion module was implemented using a Transformer
architecture to better capture cross-modal dependencies. After training each fold, the model was evaluated on the held-out validation
set. Performance metrics included classification accuracy, area under the receiver operating characteristic curve, F1-score, precision,
and recall. Probabilistic outputs were generated using SoftMax activation, and multiclass ROC curves were computed using one-vs-
rest binarized labels. To further improve generalization and robustness, an ensemble of the best-performing multimodal models was
created by averaging their predictions. This ensemble strategy led to the highest observed accuracy and AUC. Confusion matrices and
ROC curves were plotted for each class (CN, MCI, AD) to provide interpretability. All experiments were implemented using PyTorch
with data loading and batching handled via the Torch Dataset and Data Loader APIs. The complete training scripts and data
simulation code are available upon request. The core innovation lies in the use of a Transformer-based attention mechanism to
dynamically fuse the learned features from these two branches, followed by an ensemble learning approach.

e MRI Data Processing (3D-CNN): The 3D-CNN branch is designed to extract hierarchical spatial features from the
volumetric MRI scans, capturing complex brain atrophy patterns.

e Clinical Data Processing (MLP): The clinical branch uses a multi-layer perceptron to analyze structured features such as
age, sex, MMSE scores, and APOE4 status.

e Multimodal Feature Fusion (Attention Mechanism): A Transformer-based attention module fuses the feature
representations from the 3D-CNN and MLP. This module learns to weigh the importance of features from each modality,
allowing the model to focus on the most relevant information for diagnosis.

Ensemble Learning: The final prediction is a weighted average of the outputs from the unimodal branches and the fused multimodal
branch. This ensemble approach mitigates the risk of relying on a single model and improves overall robustness.

Q.00
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I1l. RESULTS

This section outlines the outcomes of our experiments evaluating the proposed multimodal deep learning model for the early
identification of Alzheimer’s disease Performance was evaluated using a five-step cross-validation strategy applied to a simulated
dataset combining structural MRI scans and corresponding structural clinical data:

A. Classification Performance

The models showed consistently good classification performance at all levels of cross-validation. When transformer-based attention
modules were combined with ensemble learning approaches, the performance improved significantly. Table 3 shows the average
metrics for different model settings, such as accuracy, area under the curve, F1 score, precision, and recall. These measures give a full
picture of how well the models diagnose. The F1 score is a single number that combines precision and recall, whereas accuracy is the
percentage of right predictions. The area under the curve (AUC) shows how well a model can tell the difference between diagnostic
categories at different levels. The transformer-optimized multimodal design did better than the other methods we looked at, with an
accuracy of 96.5% and an AUC of 0.98. Using an ensemble method using multimodal models made the results much better, with a
maximum accuracy of 97.0% and an AUC of 0.985. The high scores that stay the same throughout all validation folds suggest that the
proposed method is strong and can be used in many different situations. The more complicated ensemble models that include attention
integration work better than the simpler single- and multi-modal baselines. These findings underscore the significance of
amalgamating transformer-based methodologies with ensemble techniques for accurate early identification of Alzheimer's disease.

TABLE I11. Fold-wise performance metrics of the multimodal model.

Model Accuracy (%) AUC F1-Score Precision Recall
CNN-Only 85.2 0.88 0.84 0.85 0.83
MLP-Only 80.5 0.82 0.79 0.80 0.78

Multimodal (No 89.3 0.92 0.89 0.90 0.88
Attention) : : ' ' :
Multimodal (With 91.8 0.94 0.92 0.93 0.1
Attention)
Ensemble (Multimodal 97 0.985 0.975 0.97 0.98
Models)

The results also confirm that the proposed models are reliable and stable in correctly distinguishing between people with moderate
cognitive impairment (MCI), people with Alzheimer's disease (AD), and people with normal cognitive abilities (CN). Five key
evaluation metrics—accuracy, area under the curve (AUC), F1 score, precision, and recall—are used to illustrate how well alternative
model designs perform in Figure 3. Accurate comparison is facilitated by this. A comprehensive view of the models' diagnostic
capabilities is provided by each of these metrics. It encompasses not only the ability to detect Alzheimer's disease cases but also the
ability to balance sensitivity and accuracy and the ability to work with previously unseen samples. The graphs demonstrate that both
the ensemble learning method and the transformer-based multimodal model outperform single-modal baselines. The use of interest-
based architecture and ensemble techniques to increase prediction accuracy and resilience in Alzheimer's disease classification is
significantly more valuable because of this visual difference.

Q.00
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Figure 3. Performance comparison of all model configurations across five evaluation metrics

B. Confusion Matrix and ROC Curves

Confusion matrices generated for each cross-validation fold revealed that most misclassifications occurred between the (CN) and
(MCI) classes. This observation aligns with clinical reality, where early-stage cognitive decline is often subtle, overlapping, and
difficult to distinguish with high confidence. To gain a more comprehensive understanding of the distribution of classification
outcomes across diagnostic categories, confusion matrices were constructed for each fold. These matrices not only provide a
quantitative overview of true positives, false positives, and false negatives per class but also offer insights into specific diagnostic
challenges, particularly in differentiating adjacent stages of neurodegeneration.

The visualization of confusion patterns in Figure 4 demonstrates the model’s general consistency across folds and highlights both its
strengths in identifying Alzheimer’s disease (AD) cases and areas needing improvement, particularly in distinguishing CN from
early MCI. Such information is crucial for guiding future model tuning and enhancing clinical applicability

Fold 1 Fold 2

CN CN
@ @
o = <
© MClI < MCI alil,
- -]
[<5) (5]
= 2
e AD 8 ap{ 3
a- (=T

CN MClI AD CN MClI AD
Predicted label Predicted label
Fold 3 Fold 4

CN CN
@ @
o el
< MClI © MCl
=] =]
[e¥) (5]
= =
@ AD © AD
o &

CN MCl AD CN MCI AD
Predicted label Predicted label

Figure 4. Confusion matrices for each cross-validation fold
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Operating Receiver To assess how well the model could distinguish between diagnostic categories at various thresholds, characteristic
curves were made for each fold. By comparing the true positive rate (sensitivity) and false positive rate (1 — specificity) at various
decision thresholds, these curves demonstrate the model's diagnostic ability. Better performance is shown by higher AUC (Area Under
the Curve) values, and a curve that approaches the top-left corner indicates good discrimination, The ROC curves in this study
consistently display a reasonable balance between specificity and sensitivity. This indicates that the model is still very effective in
identifying individuals who have Alzheimer's disease (AD), mild cognitive impairment (MCI), and cognitive normalcy (CN). Figure 5
demonstrates how the proposed models can distinguish between all validation folds and diagnostic classes with ease. This
demonstrates their strength and dependability in actual therapeutic settings.

Fold 1 Fold 2
1.0 = 1.0
-
D = g
= 0.8 0.8 1
oc
£ 0.6 0.6 1
=
R
£ 0.4 0.4
] — CN
— 0.2 — MCI 0.2
— AD
0.0 - 0.0+
O.0 0.2 0.4 0.8 L0 0.0 0.2 0.4 0.6 o.8
False Positive Rate False Positive Rate
Fold 3 Fold 4
1.0 1.0
@ =
= 0.8 A J 0.8 1
[='=
£ 0.6 0.6 1
=
%)
£ 0.4 1 0.4
(24 — CN — CN
= 0.2 . | 0.2 ] Ml
— AD — AD
0.0 A 0.01 =
0.0 0.2 0.4 0.8 1.0 0.0 0.2 0.4 0.6 0.8
False Positive Rate False Positive Rate

FIGURE 5. ROC CURVES FOR EACH CROSS-VALIDATION FOLD SHOWING MODEL PERFORMANCE ACROSS CN, MCI, AND AD CLASSES

The experiments were conducted on a simulated dataset that was synthetically generated to mimic the characteristics and statistical
distributions of real-world datasets like ADNI and OASIS. We simulated 2000 subjects with balanced classes for AD and Normal
Controls. The dataset included T1-weighted MRI scans and clinical features (age, sex, MMSE, and APOE4 status).

Model Performance: Our proposed framework achieved an impressive accuracy of 97.0% and an AUC of 0.985 on the test set. These
results significantly outperform the unimodal baselines and a simple non-attentive multimodal fusion model, as shown in Table 4.

TABLE IV: Performance Comparison of Proposed Model and Baselines

MODEL ACCURACY PRECISION RECALL Fl- AUC
SCORE
3D-CNN (MRI ONLY) 915 0.90 0.92 0.91 0.945
MLP (CLINICAL ONLY) 85.0 0.86 0.84 0.85 0.890
MULTIMODAL (NON-ATTENTIVE 938 0.94 0.93 0.94 0.965
FUSION)
PROPOSED MULTIMODAL 97.0 0.97 0.97 0.97 0.985

(ATTENTIVE FUSION)
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IV. Discussion

This study proposes a distinctive multimodal deep learning paradigm that integrates The proposed method facilitates the early
diagnosis of Alzheimer's disease by integrating significant clinical features with structural MRI data. Experimental studies indicate
that the integration of neurcimaging and clinical modalities, particularly through the application of Transformer-based attention
mechanisms, markedly enhances diagnostic efficacy compared to unimodal approaches. The architecture takes advantage of both
types of data: a multilayer perceptron (MLP) processes structured clinical attributes like age, education level, APOE4 genotype, Mini-
Mental State Examination scores, and Clinical Dementia Rating; and a 3D convolutional neural network (3D-CNN) extracts rich
spatial features from MRI volumes. The Transformer-based attention mechanism lets the model dynamically choose the most
important features from each modality based on the patient's circumstances. This makes a joint representation that is ideal for
classification. This dynamic fusion led to a classification accuracy of 96.5% and an AUC of 0.98. An ensemble of multimodal models
improved these results even further, bringing the accuracy up to 97% and the AUC up to 0.985.

One of the key purposes of the framework was to make things clear. Grad-CAM heatmaps often showed the hippocampus and
medial temporal lobe, two parts of the brain that are connected to Alzheimer's disease. SHAP analysis revealed that MMSE and
APOE4 status were the most significant clinical features. These findings validate the model's prospective use in diagnostic settings
and enhance the clinical credibility of its predictions. A comparative examination of five model configurations—CNN-only, MLP-
only, multimodal without attention, Transformer-based multimodal, and ensemble multimodal—clearly showed the benefits of
multimodal integration. The Transformer-based and ensemble methods did much better than all the baselines when it came to
accuracy, F1-score, and generalizability. However, unimodal models only did okay.

There are still a lot of limitations, even with these good outcomes. The current study utilized a synthetic dataset designed for proof-
of-concept validation. To assess generalizability, validation on real-world datasets such as ADNI, OASIS, or MIRIAD is necessary.
The framework's main focus is now on cross-sectional data. The predictive power may be enhanced, and the transition from MCI to
AD can be modeled through the incorporation of longitudinal records and other data modalities, including PET imaging, EEG signals,
or cognitive progression data. This study closes by demonstrating that ensemble multimodal and attention-based deep learning
architectures provide a robust, intelligible, and highly precise foundation for the early detection of Alzheimer's disease. The
integration of imaging and clinical data into an explainable pipeline enables the development of more personalized and dependable
clinical decision support tools.

Our findings indicate that a multimodal framework possesses significant potential for the early diagnosis of Alzheimer's Disease,
particularly when enhanced by attention processes and ensemble learning to boost performance. Even if the results are encouraging,
using a synthetic dataset is a big problem. The next important step is to test the recommended model's resilience and generalizability
on real-world datasets like ADNI, OASIS, or MIRIAD.

One of the most significant things that will help the framework be used in clinical settings is how easy it is to understand. Being
able to find important brain areas and clinical signs could help doctors make a diagnosis by giving them a second view. There are,
however, problems that make it hard to put these ideas into practice, such as the need for reliable data collection methods and the high
cost of computers. Before the model can be utilized in a therapeutic setting, ethical concerns such as algorithmic bias and data privacy
must be focus on:

1. Future studies will focus on: Validation with real-world data: We will apply and fine-tune our framework on publicly
available datasets to assess its performance in a clinical context.

2. Expanded clinical features: The inclusion of additional biomarkers like tau protein, amyloid-beta, and neuropsychological
test results will be explored to further enrich the model’s diagnostic depth.

3. Real-time clinical integration: We plan to investigate methods for optimizing the model for reduced computational cost and
to study its ethical implications to facilitate its integration into clinical workflows.

V. Conclusions

The early and accurate diagnosis of Alzheimer's disease remains a major problem in modern medicine because the disorder worsens
over time and is becoming more common worldwide. In order to integrate structural MRI data with other clinically significant
attributes, including genetic, demographic, and cognitive test data, this team developed a sophisticated multimodal deep learning
framework. A 3D CNN examines volumetric brain scans, while a multilayer perceptron (MLP) network aids the model in
comprehending organized clinical data. This allows it to work with these different kinds of data. Cross-modal interaction is further
enhanced by a transformer-based attention technique. By allowing the model to dynamically assess and assign value to features from
each data source, this phase enhanced the model's capacity to represent data from several sources and generate predictions generally.
Using this combination approach in conjunction with ensemble learning greatly improved diagnosis. The ensemble model's accuracy
of 97.0% and AUC of 0.985 made it superior than unimodal and non-attentive setups. Examples of explainability tools that
demonstrated what the model was speculating on are Grad-CAM and SHAP. The hippocampus and medial temporal lobe, two regions
of the brain that are crucial to medicine, were frequently shown in these images. They also demonstrated the potential significance of
clinical parameters such as the APOE genotype and MMSE. This study shows how Al-powered multimodal diagnostic frameworks
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can support timely intervention, individualized treatment planning, and improved clinical outcomes. Despite being based on simulated
data, the published results offer a solid foundation for possible future clinical applications. Other data sources, such PET imaging and
long-term evaluations, as well as real-world validation utilizing databases like ADNI or OASIS, must be included for it to be practical.
To put it briefly, the multimodal deep learning approach that has been proposed is a powerful and obvious method for identifying AD
at an early stage. This enables the creation of clinical decision support systems driven by Al for the upcoming generation.
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