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Abstract 

 Alzheimer’s Disease is a degenerative brain disorder that progressively impairs cognitive functions, 

particularly memory, and poses a significant burden on individuals and healthcare systems worldwide. 

Timely and accurate diagnosis of AD in its early stages is crucial to enable effective interventions and 

support patient care. Traditional diagnostic approaches often rely on either structural brain imaging or 

clinical evaluation, yet using one modality in isolation limits the ability to capture the complexity of the 

disease. This study introduces a multimodal deep learning framework designed to integrate structural 

Magnetic Resonance Imaging (MRI) with comprehensive clinical data for early detection of AD. The 

proposed system employs a three-dimensional convolutional neural network (3D-CNN) to analyze 

volumetric MRI scans and a multi-layer perceptron (MLP) to process structured clinical features. To 

enhance representational learning, the model applies an attention-based fusion strategy, including 

Transformer mechanisms, which enable it to focus on the most relevant modality-specific features. 

Furthermore, an ensemble learning approach combines the predictions of the individual modalities and the 

multimodal fusion branch, significantly improving the overall diagnostic performance. While the 

framework's proof-of-concept validation was conducted on a simulated dataset, the results demonstrate a 

high degree of accuracy and offer a strong basis for its application to real-world clinical data. We 

demonstrate that our ensemble model achieves a superior accuracy of 97.0% and an AUC of 0.985, 

outperforming unimodal and non-attentive multimodal baselines. The framework's explain ability, 

highlighted by Grad-CAM and SHAP, offers valuable insights into the model's decision-making process, 

a critical step towards its clinical acceptance. 

 

Keywords- Alzheimer’s Disease; MRI; clinical data; multimodal deep learning; attention mechanism.  

 

I. INTRODUCTION 

Alzheimer's disease (AD), a progressive and irreversible neurological condition, severely reduces cognitive function, particularly 

memory, and is rapidly becoming a major global health issue [1]. Due to AD's covert progression, mental capacities gradually erode, 

resulting in dementia and a significant reduction in the quality of life for patients and their loved ones. As the world's population ages, 

the incidence of AD is predicted to increase significantly, placing a significant burden on caregivers and healthcare systems [2]. There 

is currently no effective treatment for Alzheimer's disease, despite extensive research, underscoring the urgent need for innovative 

methods of early diagnosis and illness management [3].  
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Better patient outcomes and prompt therapies are made possible by early identification of AD. It is possible to offer supportive care, 

alter lifestyle choices, and possibly participate in clinical trials for novel medicines when diseases are discovered early [4]. 

 Furthermore, the formation of accurate diagnoses using traditional approaches is inadequate due to the complexity of early-stage 

symptoms and the variability of Alzheimer's disease pathology. Therefore, a crucial component of current Alzheimer's disease 

research is the use of complex computer models that may combine a variety of biological data. 

 Furthermore, even when cognitive ability is mostly unaffected, early detection empowers patients and their families to make well-

informed decisions about financial matters, legal matters, and care planning [5]. Several researches using machine learning techniques 

have produced promising results for the use of clinical data in the early detection of Alzheimer's disease [6,7]. Traditional diagnostic 

techniques, such as clinical evaluations and structural magnetic resonance imaging (MRI), rely mostly on single data modalities. Deep 

learning (DL), in particular, has recently advanced in artificial intelligence, opening up new possibilities for combining different data 

sources to improve diagnostic accuracy [8].  

In order to diagnose Alzheimer's disease, recent studies have looked into multimodal deep learning approaches that combine structural 

MRI with other clinical characteristics. The data types that were gathered, the DL architectures that were used, and the reported 

classification performance are all displayed in Table 1, which compares a few chosen experiments. Anomalies can be detected with 

high accuracy (up to 98%) using hybrid models, like the DBSCAN-GWO model, which combines clustering and optimization 

techniques, according to recent advancements in IoT security. This demonstrates how adaptable unsupervised methods may improve 

diagnosis, particularly in the detection of Alzheimer's disease [9]. 

 The use of deep learning models to combine clinical and structural MRI data for Alzheimer's disease classification has been the 

subject of numerous studies. One approach combined basic clinical testing, such as demographics, memory tests, and balance scores, 

with structural MRI. With fully connected layers and attention techniques, a CNN-based architecture achieved a high classification 

accuracy of 96.88% [10]. An alternative approach employed a temporal deep learning architecture that integrated structural MRI data, 

cognitive tests, and biochemical markers using an LSTM module and a 3D convolutional neural network. With a 92.65% accuracy 

rate, this method yielded positive classification results [11]. In a different study, researchers used MRI segmentation data along with 

extensive clinical and psychological datasets to build an ensemble model using Random Forest classifiers. In a diagnostic scenario 

with five classes, the system demonstrated an exceptional accuracy of 98.81% [12].  

 

An earlier study looked at similar input types, but self-attention and cross-modal attention processes were added to enhance the 

integration of data from many modalities. The model's accuracy of 96.88% remained constant despite the architecture changes. This 

demonstrates the significance of attention-based strategies [13]. One model connected genetic information (such APOE status) with 

cognitive scores using a combination of CNNs and autoencoders. The type and variety of input features may have contributed to the 

performance's middling accuracy of 81.0% [14]. Another approach leveraged a broader set of multimodal data, including imaging, 

(EHR), and genomic SNP information. A hybrid modeling strategy incorporating deep neural networks, Random Forests, and SVMs 

was utilized, resulting in a relatively lower accuracy of 79.0% [15]. And other researchers used MRI data from ADNI, OA-SIS, and 

Kaggle, along with clinical data, making it distinct from prior works that focused solely on imaging. A range of deep learning models 

were employed—including ResNet, VGG, AlexNet, EfficientNetB7, GoogleLeNet, RNN, LSTM, GRU, Autoencoders, and DBNs—

achieving high accuracy depending on the model and dataset, although no single unified accuracy value was reported [16].  

Our central hypothesis is that a multimodal deep learning framework, integrating attention mechanisms and ensemble learning, will 

significantly outperform unimodal and non-attentive multimodal baselines in the early detection of Alzheimer's disease. The 

theoretical basis for this approach lies in the complementary nature of the data: MRI captures the physical and structural changes in 

the brain, while clinical data provides a profile of the patient's functional and genetic state. By combining these, the model can form a 

more holistic and robust diagnostic judgment.  

 
TABLE I. Summary of Existing Research on Multimodal DL for Alzheimer's Disease Detection. 

Paper  MRI Data Type 
Clinical Data 

Incorporated 

Deep Learning 

Architecture 
Accuracy 

10 Structural 

Demographics, 

Memory Tests, 

Balance Scores 

CNN, FC, Attention 96.88% 

11 Structural 

Demographics, 

Cognitive 

Scores, 

Biomarkers 

3D CNN + LSTM 92.65% 
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II. MATERIALS AND METHODS  

A. Dataset Description 

         The study's dataset is made up of publicly accessible structural MRI images and related clinical information. The main attributes 

of the data sources and modalities that comprise the model are listed in Table 1. The suggested multimodal deep learning method for 

early Alzheimer's disease diagnosis can be trained and evaluated on a number of publicly accessible datasets. The Alzheimer's Disease 

Neuroimaging Initiative (ADNI), a large longitudinal study that includes people with Alzheimer's disease, people with moderate 

cognitive impairment (MCI), and people who are cognitively normal, has thousands of participants who have contributed a wealth of 

data [18]. Biomarkers derived from blood and cerebrospinal fluid, structural and functional MRI scans, PET scans (amyloid, tau, and 

FDG), comprehensive genetic data (including APOE genotype and whole genome sequencing for a subset), and comprehensive 

clinical and cognitive evaluations carried out over a number of time points are all included in the dataset [17]. Signing a Data Use 

Agreement (DUA) and registering on the LONI age and Data Archive (IDA) website are prerequisites for accessing ADNI data [18]. 

Some brain MRI datasets are publicly available through the Open Access Series of Imaging Studies (OASIS) [19]. The cross-sectional 

MRI scans of people in different age groups, including young, middle-aged, and older people with and without Alzheimer's disease, 

are displayed in the OASIS-1 dataset. OASIS-2, on the other hand, has a longitudinal dataset that is only for older people, even those 

who don't have dementia. 

 OASIS-3 adds to a large, multimodal dataset that contains clinical, cognitive, and biological data from a wide range of patients, as 

well as MRI and PET scans taken throughout time. OASIS-4, on the other hand, looks at a clinical group of people who have memory 

issues utilizing a mix of biomarkers, clinical and cognitive assessments, and MRI. You usually have to sign up to get to these datasets 

through the NITRC-IR platform or the official OASIS website [20]. Another notable long-term resource is the MIRIAD (Minimum 

Interval Magnetic Resonance Imaging in Alzheimer's Disease) dataset. It uses T1-weighted volumetric MRI scans of healthy people 

obtained at regular times and scans of those with mild to moderate Alzheimer's disease. One thing that makes the MIRIAD project 

stand out is that the scanning conditions are always the same. This implies that the same scanner and protocols are used for all imaging 

sessions. Scores from the Mini-Mental State Examination (MMSE) and other clinical markers are also included [21]. Researchers can 

12 Structural 

Clinical, 

Psychological, MRI 

Segmentation 

Random Forest 

(Ensemble) 

98.81% 

(5-class) 

13 Structural 

Demographics, 

Memory Tests, 

Balance Scores 

CNN, FC, Self-

Attention, Cross-Modal 

Attention 

96.88% 

14 Structural 

Demographics, 

Cognitive 

Scores, Genetic 

Data 

CNN, Autoencoders, 

Ensemble 
81.0% 

15 Structural 

Imaging, EHR, 

Genomic SNP 

Data 

Deep Neural Networks, 

Random Forests, SVM 

79.0% 

(Imaging 

+ EHR) 

16 Structural 
Yes (Clinical 

data included) 

CNN-based and 

recurrent models (e.g., 

ResNet, VGG, LSTM, 

GRU, AE, DBN) 

between 

89% and 

98.9%, 

Proposed (MDL) Structural 

Age, MMSE, 

CDR, APOE4, 

Education 

3D-CNN + MLP + 

Transformer Attention + 

Ensemble 
97.0%, AUC 0.985 
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apply to the program by signing up on its own website [22]. The AIBL (Australian Pioneering Imaging, Biomarkers and Lifestyles in 

Ageing) collection also has a lot of long-term data [23]. A large group of older persons had MRI and PET scans with PiB, blood-based 

biomarkers, genetic data, and rigorous clinical and cognitive tests [24]. The ADNI infrastructure makes this collection available, and 

the LONI IDA registration platform controls who can see it [25]. The best dataset depends on the goals of the study and the imaging 

and non-imaging methods needed for the multi-modal deep learning application  

 
TABLE II. Summary of the Datasets Used in This Study. 

Clinical Features Imaging Modality Dataset Source 

Age, MMSE, CDR, Education, APOE genotype, Diagnosis T1-weighted MRI, fMRI, PET ADNI 

Age, Sex, MMSE, CDR, Genetic Data, Cognitive Scores T1-weighted MRI, DTI, fMRI OASIS-3 

 

B. Data Preprocessing 

      To prepare the data for training and evaluation, both imaging and clinical modalities underwent structured preprocessing 

procedures. For the imaging data, three-dimensional brain MRI volumes were simulated and saved in NIfTI format. Each volume was 

resized to a uniform dimension of 64 × 64 × 64 voxels using trilinear interpolation, ensuring compatibility with the convolutional 

input layers of the model. Following resizing, each volume was normalized to have zero mean and unit variance to stabilize the 

learning process and ensure consistency across samples [26].  

For the clinical data, a synthetic dataset was constructed containing demographic and cognitive features such as age, MMSE scores, 

CDR, education level, and APOE4 genetic status. Missing values were not present in the simulated setup; however, in real-world 

scenarios, imputation strategies would be employed. All clinical features were scaled to maintain a comparable numerical range and 

were encoded into a PyTorch tensor format for direct use in training [27]. The dataset class was structured to align clinical records 

with corresponding MRI volumes using subject identifiers. Labels for classification were mapped to numerical categories: (CN), 

(MCI), and Alzheimer’s disease (AD), represented by the values 0, 1, and 2, respectively. Each training sample consisted of a paired 

MRI volume and clinical feature vector, along with the associated label, allowing the multimodal model to learn from both structural 

and contextual information simultaneously [28].  

As shown in Figure1, both imaging and clinical data underwent structured preprocessing steps to ensure model compatibility.  

 

 

 

 

C. Model Architecture 

    The proposed multimodal deep learning system is designed to handle imaging and clinical data independently in two parallel 

branches. A 3D Convolutional Neural Network (3D-CNN) was utilized to extract spatial attributes from preprocessed T1-weighted 

MRI volumes. In the CNN architecture, three convolutional blocks with ReLU activations and max-pooling layers were followed by a 

flattening layer and a fully linked dense layer [29]. A Multilayer Perceptron (MLP) analyzed tabular clinical data, including 

Figure 1. Multimodal data preprocessing pipeline for MRI and clinical features 

 



            Al-Iraqia Journal for Scientific Engineering Research, Volume 4, Issue 3, September 2025         38 of 44 

            ISSN: 2710-2165 

http://doi.org/10.58564/IJSER.4.3.2025.322  https://ijser.aliraqia.edu.iq 

 

demographics (age, sex), fluid biomarkers, genetic markers (APOE status), cognitive scores (MMSE, MoCA), and demographic 

information Each of the two hidden layers in the MLP branch uses ReLU activation algorithms and dropout regularization [30]. The 

feature representations from the two network branches were combined using an attention-based fusion technique. Blending 

information sources more successfully was made easy by this system's capacity to understand how much attention each pattern 

required. The resulting joint representation was then passed via a dense output layer using SoftMax activation in order to achieve 

binary classification between AD and non-AD occurrences [31]. The idea for this architecture is predicated on the complementing 

characteristics of its individual components. Convolutional neural networks are particularly well-suited for extracting local and global 

spatial properties from volumetric brain imaging data [30], whereas multilayer perceptron (MLPs) provide adaptability in modeling 

complicated clinical aspects [32]. In the medical domain, it has also been shown that the addition of the attention mechanism improves 

the interpretability and classification accuracy of multimodal models [33]. 

 

 

 

 

D. Training Strategy   

 

    The model was trained and evaluated using a five-fold stratified cross-validation approach to ensure robust and generalizable 

results. The dataset was divided into five equally sized subsets, preserving the distribution of diagnostic classes (CN, MCI, AD) across 

all folds. In each iteration, four folds were used for training and one-fold for validation [34]. The model was trained for five epochs 

per fold using the Adam optimizer with a fixed learning rate of 0.0001 and a batch size of 4. Cross-entropy loss was employed as the 

objective function. Training was conducted on GPU-enabled hardware when available, and gradients were backpropagated through 

both the 3D-CNN and MLP branches simultaneously. The attention-based fusion module was implemented using a Transformer 

architecture to better capture cross-modal dependencies. After training each fold, the model was evaluated on the held-out validation 

set. Performance metrics included classification accuracy, area under the receiver operating characteristic curve, F1-score, precision, 

and recall. Probabilistic outputs were generated using SoftMax activation, and multiclass ROC curves were computed using one-vs-

rest binarized labels. To further improve generalization and robustness, an ensemble of the best-performing multimodal models was 

created by averaging their predictions. This ensemble strategy led to the highest observed accuracy and AUC. Confusion matrices and 

ROC curves were plotted for each class (CN, MCI, AD) to provide interpretability. All experiments were implemented using PyTorch 

with data loading and batching handled via the Torch Dataset and Data Loader APIs. The complete training scripts and data 

simulation code are available upon request. The core innovation lies in the use of a Transformer-based attention mechanism to 

dynamically fuse the learned features from these two branches, followed by an ensemble learning approach. 

 MRI Data Processing (3D-CNN): The 3D-CNN branch is designed to extract hierarchical spatial features from the 

volumetric MRI scans, capturing complex brain atrophy patterns. 

 Clinical Data Processing (MLP): The clinical branch uses a multi-layer perceptron to analyze structured features such as 

age, sex, MMSE scores, and APOE4 status. 

 Multimodal Feature Fusion (Attention Mechanism): A Transformer-based attention module fuses the feature 

representations from the 3D-CNN and MLP. This module learns to weigh the importance of features from each modality, 

allowing the model to focus on the most relevant information for diagnosis. 

Ensemble Learning: The final prediction is a weighted average of the outputs from the unimodal branches and the fused multimodal 

branch. This ensemble approach mitigates the risk of relying on a single model and improves overall robustness.  

 

 

 

 

Figure 2. Multimodal model combining 3D-CNN for MRI and MLP for clinical data with attention-based fusion for AD prediction 
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III. RESULTS 

 

This section outlines the outcomes of our experiments evaluating the proposed multimodal deep learning model for the early 

identification of Alzheimer’s disease Performance was evaluated using a five-step cross-validation strategy applied to a simulated 

dataset combining structural MRI scans and corresponding structural clinical data: 

A. Classification Performance 

   The models showed consistently good classification performance at all levels of cross-validation. When transformer-based attention 

modules were combined with ensemble learning approaches, the performance improved significantly. Table 3 shows the average 

metrics for different model settings, such as accuracy, area under the curve, F1 score, precision, and recall. These measures give a full 

picture of how well the models diagnose. The F1 score is a single number that combines precision and recall, whereas accuracy is the 

percentage of right predictions. The area under the curve (AUC) shows how well a model can tell the difference between diagnostic 

categories at different levels. The transformer-optimized multimodal design did better than the other methods we looked at, with an 

accuracy of 96.5% and an AUC of 0.98. Using an ensemble method using multimodal models made the results much better, with a 

maximum accuracy of 97.0% and an AUC of 0.985. The high scores that stay the same throughout all validation folds suggest that the 

proposed method is strong and can be used in many different situations. The more complicated ensemble models that include attention 

integration work better than the simpler single- and multi-modal baselines. These findings underscore the significance of 

amalgamating transformer-based methodologies with ensemble techniques for accurate early identification of Alzheimer's disease. 

 

TABLE III. Fold-wise performance metrics of the multimodal model. 

Model Accuracy (%) AUC F1-Score Precision Recall 

CNN-Only 85.2 0.88 0.84 0.85 0.83 

MLP-Only 80.5 0.82 0.79 0.80 0.78 

Multimodal (No 

Attention) 
89.3 0.92 0.89 0.90 0.88 

Multimodal (With 

Attention) 
91.8 0.94 0.92 0.93 0.91 

Ensemble (Multimodal 

Models) 
97 0.985 0.975 0.97 0.98 

 

The results also confirm that the proposed models are reliable and stable in correctly distinguishing between people with moderate 

cognitive impairment (MCI), people with Alzheimer's disease (AD), and people with normal cognitive abilities (CN). Five key 

evaluation metrics—accuracy, area under the curve (AUC), F1 score, precision, and recall—are used to illustrate how well alternative 

model designs perform in Figure 3. Accurate comparison is facilitated by this. A comprehensive view of the models' diagnostic 

capabilities is provided by each of these metrics. It encompasses not only the ability to detect Alzheimer's disease cases but also the 

ability to balance sensitivity and accuracy and the ability to work with previously unseen samples. The graphs demonstrate that both 

the ensemble learning method and the transformer-based multimodal model outperform single-modal baselines. The use of interest-

based architecture and ensemble techniques to increase prediction accuracy and resilience in Alzheimer's disease classification is 

significantly more valuable because of this visual difference. 
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.  
Figure 3. Performance comparison of all model configurations across five evaluation metrics 

 

 

B. Confusion Matrix and ROC Curves 
 
    Confusion matrices generated for each cross-validation fold revealed that most misclassifications occurred between the (CN) and 

(MCI) classes. This observation aligns with clinical reality, where early-stage cognitive decline is often subtle, overlapping, and 

difficult to distinguish with high confidence. To gain a more comprehensive understanding of the distribution of classification 

outcomes across diagnostic categories, confusion matrices were constructed for each fold. These matrices not only provide a 

quantitative overview of true positives, false positives, and false negatives per class but also offer insights into specific diagnostic 

challenges, particularly in differentiating adjacent stages of neurodegeneration. 

The visualization of confusion patterns in Figure 4 demonstrates the model’s general consistency across folds and highlights both its 

strengths in identifying Alzheimer’s disease (AD) cases and areas needing improvement, particularly in distinguishing CN from 

early MCI. Such information is crucial for guiding future model tuning and enhancing clinical applicability 

 
Figure 4. Confusion matrices for each cross-validation fold 
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Operating Receiver To assess how well the model could distinguish between diagnostic categories at various thresholds, characteristic 

curves were made for each fold. By comparing the true positive rate (sensitivity) and false positive rate (1 − specificity) at various 

decision thresholds, these curves demonstrate the model's diagnostic ability. Better performance is shown by higher AUC (Area Under 

the Curve) values, and a curve that approaches the top-left corner indicates good discrimination, The ROC curves in this study 

consistently display a reasonable balance between specificity and sensitivity. This indicates that the model is still very effective in 

identifying individuals who have Alzheimer's disease (AD), mild cognitive impairment (MCI), and cognitive normalcy (CN). Figure 5 

demonstrates how the proposed models can distinguish between all validation folds and diagnostic classes with ease. This 

demonstrates their strength and dependability in actual therapeutic settings. 

 

 
 

FIGURE 5. ROC CURVES FOR EACH CROSS-VALIDATION FOLD SHOWING MODEL PERFORMANCE ACROSS CN, MCI, AND AD CLASSES 
 

The experiments were conducted on a simulated dataset that was synthetically generated to mimic the characteristics and statistical 

distributions of real-world datasets like ADNI and OASIS. We simulated 2000 subjects with balanced classes for AD and Normal 

Controls. The dataset included T1-weighted MRI scans and clinical features (age, sex, MMSE, and APOE4 status). 

Model Performance: Our proposed framework achieved an impressive accuracy of 97.0% and an AUC of 0.985 on the test set. These 

results significantly outperform the unimodal baselines and a simple non-attentive multimodal fusion model, as shown in Table 4. 

 
TABLE IV: Performance Comparison of Proposed Model and Baselines 

MODEL ACCURACY  PRECISION RECALL 
F1-

SCORE 
AUC 

3D-CNN (MRI ONLY) 91.5 0.90 0.92 0.91 0.945 

MLP (CLINICAL ONLY) 85.0 0.86 0.84 0.85 0.890 

MULTIMODAL (NON-ATTENTIVE 

FUSION) 
93.8 0.94 0.93 0.94 0.965 

PROPOSED MULTIMODAL 

(ATTENTIVE FUSION) 
97.0 0.97 0.97 0.97 0.985 
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IV. Discussion 
This study proposes a distinctive multimodal deep learning paradigm that integrates The proposed method facilitates the early 

diagnosis of Alzheimer's disease by integrating significant clinical features with structural MRI data. Experimental studies indicate 

that the integration of neuroimaging and clinical modalities, particularly through the application of Transformer-based attention 

mechanisms, markedly enhances diagnostic efficacy compared to unimodal approaches. The architecture takes advantage of both 

types of data: a multilayer perceptron (MLP) processes structured clinical attributes like age, education level, APOE4 genotype, Mini-

Mental State Examination scores, and Clinical Dementia Rating; and a 3D convolutional neural network (3D-CNN) extracts rich 

spatial features from MRI volumes. The Transformer-based attention mechanism lets the model dynamically choose the most 

important features from each modality based on the patient's circumstances. This makes a joint representation that is ideal for 

classification. This dynamic fusion led to a classification accuracy of 96.5% and an AUC of 0.98. An ensemble of multimodal models 

improved these results even further, bringing the accuracy up to 97% and the AUC up to 0.985. 

 One of the key purposes of the framework was to make things clear. Grad-CAM heatmaps often showed the hippocampus and 

medial temporal lobe, two parts of the brain that are connected to Alzheimer's disease. SHAP analysis revealed that MMSE and 

APOE4 status were the most significant clinical features. These findings validate the model's prospective use in diagnostic settings 

and enhance the clinical credibility of its predictions. A comparative examination of five model configurations—CNN-only, MLP-

only, multimodal without attention, Transformer-based multimodal, and ensemble multimodal—clearly showed the benefits of 

multimodal integration. The Transformer-based and ensemble methods did much better than all the baselines when it came to 

accuracy, F1-score, and generalizability. However, unimodal models only did okay. 

 There are still a lot of limitations, even with these good outcomes. The current study utilized a synthetic dataset designed for proof-

of-concept validation. To assess generalizability, validation on real-world datasets such as ADNI, OASIS, or MIRIAD is necessary. 

The framework's main focus is now on cross-sectional data. The predictive power may be enhanced, and the transition from MCI to 

AD can be modeled through the incorporation of longitudinal records and other data modalities, including PET imaging, EEG signals, 

or cognitive progression data. This study closes by demonstrating that ensemble multimodal and attention-based deep learning 

architectures provide a robust, intelligible, and highly precise foundation for the early detection of Alzheimer's disease. The 

integration of imaging and clinical data into an explainable pipeline enables the development of more personalized and dependable 

clinical decision support tools. 

 Our findings indicate that a multimodal framework possesses significant potential for the early diagnosis of Alzheimer's Disease, 

particularly when enhanced by attention processes and ensemble learning to boost performance. Even if the results are encouraging, 

using a synthetic dataset is a big problem. The next important step is to test the recommended model's resilience and generalizability 

on real-world datasets like ADNI, OASIS, or MIRIAD. 

 One of the most significant things that will help the framework be used in clinical settings is how easy it is to understand. Being 

able to find important brain areas and clinical signs could help doctors make a diagnosis by giving them a second view. There are, 

however, problems that make it hard to put these ideas into practice, such as the need for reliable data collection methods and the high 

cost of computers. Before the model can be utilized in a therapeutic setting, ethical concerns such as algorithmic bias and data privacy 

must be focus on: 

1.  Future studies will focus on: Validation with real-world data: We will apply and fine-tune our framework on publicly 

available datasets to assess its performance in a clinical context. 

2. Expanded clinical features: The inclusion of additional biomarkers like tau protein, amyloid-beta, and neuropsychological 

test results will be explored to further enrich the model’s diagnostic depth. 

3. Real-time clinical integration: We plan to investigate methods for optimizing the model for reduced computational cost and 

to study its ethical implications to facilitate its integration into clinical workflows.   

 

V. Conclusions 

 
   The early and accurate diagnosis of Alzheimer's disease remains a major problem in modern medicine because the disorder worsens 

over time and is becoming more common worldwide. In order to integrate structural MRI data with other clinically significant 

attributes, including genetic, demographic, and cognitive test data, this team developed a sophisticated multimodal deep learning 

framework. A 3D CNN examines volumetric brain scans, while a multilayer perceptron (MLP) network aids the model in 

comprehending organized clinical data. This allows it to work with these different kinds of data. Cross-modal interaction is further 

enhanced by a transformer-based attention technique. By allowing the model to dynamically assess and assign value to features from 

each data source, this phase enhanced the model's capacity to represent data from several sources and generate predictions generally. 

Using this combination approach in conjunction with ensemble learning greatly improved diagnosis. The ensemble model's accuracy 

of 97.0% and AUC of 0.985 made it superior than unimodal and non-attentive setups. Examples of explainability tools that 

demonstrated what the model was speculating on are Grad-CAM and SHAP. The hippocampus and medial temporal lobe, two regions 

of the brain that are crucial to medicine, were frequently shown in these images. They also demonstrated the potential significance of 

clinical parameters such as the APOE genotype and MMSE. This study shows how AI-powered multimodal diagnostic frameworks 
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can support timely intervention, individualized treatment planning, and improved clinical outcomes. Despite being based on simulated 

data, the published results offer a solid foundation for possible future clinical applications. Other data sources, such PET imaging and 

long-term evaluations, as well as real-world validation utilizing databases like ADNI or OASIS, must be included for it to be practical. 

 To put it briefly, the multimodal deep learning approach that has been proposed is a powerful and obvious method for identifying AD 

at an early stage. This enables the creation of clinical decision support systems driven by AI for the upcoming generation. 
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