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Abstract 
SDNs provide flexible and intelligent network capabilities by dividing traditional networks into a centralized control plane and a 

programmable data plane. Network performance improvement relies on the intelligent control plane, which establishes flow paths for 

switches. Within the control plane, the controller serves as the core component for all data plane management operations, 

underscoring the significance of its performance and capabilities. Additionally, it is crucial to utilize accurate and efficient tools for 

assessing various evaluation parameters. Specifically, based on their capabilities, we identify and categorize 14 controllers, offering a 

qualitative comparison of their features. Furthermore, we investigate the capabilities of benchmarking tools used to assess controllers 

for SDN. 
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INTRODUCTION 

In recent times, SDN has seen substantial expansion and deployment across diverse network types. This includes data 

center networks, which have actively embraced SDN [1], as well as wireless networks, Internet of Things networks [2], 

cellular networks and wide area [3], and domains related to security and privacy [4]. SDN, as a network architecture, 

fundamentally separates control logic from network devices. This separation empowers centralized traffic management 

and flow control. The SDN architecture comprises multiple layers: the control plane, the data plane, and the management 

plane. Controllers in the control plane program devices are responsible for data forwarding in the data plane, while the 

management plane works with the control layer to create and enforce policies throughout the whole network. 

Traditional networks face various limitations in areas such as flow management, traffic engineering, policy enforcement, 

virtualization, and security. These limits stem from a variety of service requirements as well as network scale [5]. By 

divorcing data traffic forwarding from network control intelligence, SDN provides an efficient and streamlined solution 

to these difficulties. Consequently, network switches become simplified forwarding devices that follow instructions from 

a software-based controller. The centralized nature of SDN allows for programmatic control over the entire network and 

allows for real-time administration of underlying devices. SDN implementation simplifies network administration and 

removes the constraints associated with rigid network structures. Notable SDN controllers include NOX [6], POX [7], 

Floodlight [8], OpenDaylight [9], Open Network Operating System [10], and RYU [11]. However, it's worth noting that 

various controllers and their variants have been documented in the literature. In practice, selecting the most suitable 

controller for a particular network type can be a challenging task. 

 

ARCHITECTURE OF SDN  

SDN is a new technology that revolves around the concept of collecting intelligence from network devices. Employing a 

centralized controller to oversee and govern all network operations. Figure 1 provides an illustration of the core 

architecture of SDN, in which The application layer, control layer, and infrastructure layer are the three separate layers. 

1. Infrastructure Layer: The network layer of SDN is made up of numerous network devices, Routers, switches, and 

access points are examples of networking devices. Within this layer, Both virtual switches (such as Open 
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vSwitch, Indigo, Pica8, Nettle, and Open Flowj) and physical switches (as described in [12]) are supported. play 

crucial roles. The data plane's principal job is to forward packets depending on predefined rules and regulations. 

 

2. Control Layer: Positioned between the application layer and the infrastructure layer, the control plane 

encompasses a controller that governs the overall operations of the SDN. This layer acts as an intermediary, 

responsible for regulating traffic flow and making routing, flow forwarding, and packet dropping decisions using 

programmable methods [13]. In distributed environments, controllers establish communication among 

themselves utilizing east- and west-bound interfaces. Furthermore, South-bound APIs such as OpenFlow and 

NetConf are used to communicate between the control layer and the infrastructure layer, facilitating seamless 

interaction and coordination [14]. 

 

3. Application Layer: SDN's application layer is accountable for handling software-related functions and safety 

applications. It encompasses various applications like virtualisation of networks, IDS are intrusion detection 

systems, intrusion detection and prevention systems (IPS), Implementation of a firewall, as well as mobility 

management. This layer establishes communication with the control layer through the (A-CPI), also known as 

the application interface on the northbound side [15] as shown in Fig. 1. 

 

 

 
Fig. 1: layered structure of SDN and their Components. 

I. SDN CONTROLLERS 

The controller holds a central role within any SDN setup, offering a comprehensive a bird's-eye view of the entire network, 

encompassing both the information plane and SDN devices. It serves as the bridge connecting these resurrected resources with 

management applications and executes flow of events as directed by means of application policies across these devicesThis section 

contains, we introduce the standard control architecture and trace their development to contemporary controllers. Additionally, we 

provide a categorization and comparative analysis of 14 distinct controllers. 

 

A. Architecture of SDN Controllers  

 Within a network that is software-defined, commonly known as (NOS), the controller serves as the pivotal and essential 

element tasked with decision-making regarding network management. 
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Fig. 2: General Overview of SDN Controller 

 

The management of traffic within the beneath the surface network is a key concern. Various proposals in the literature do not 

fundamentally alter the core architecture of the controller; instead, they exhibit variations in terms of modules and 

capabilities. Consequently, presenting detailed individual architectures may not offer significant value to the reader. In this 

context, we provide a broad overview of the overall structure, illustrated in Figure 2, and proceed to examine its distinct 

modules. 

Controller Core: The primary responsibilities  the controller is closely tied to managing the network's topology and the flow 

of traffic. The link finding module on a regular basis sends queries through external connectors using messages sent in 

packets. These queries are answered in the form of message packet, enabling the controller  construct the network's topology. 

The topology in and of itself is supervised via way of the topology manager, facilitating utilizing the topology manager in 

determining the most efficient paths between network nodes. These paths are constructed in a manner that allows for the 

enforcement of various QoS policies or security measures during path establishment. Furthermore, the controller may include 

specialized modules like a collector/manager of statistics and a queue supervisor. These serve the purposes of gathering 

performance data and overseeing There are separate incoming and outgoing packet queues, respectively. The flow controller 

stands out as one of the key modules, directly engaging with the Flow entries and flow tables in the data plane, all made 

possible through the utilization of the southbound interface. 

Interfaces: The central controller is encircled by various interfaces designed for interaction with several network layers and 

devices. The (SBI) specifies a set of rules that facilitate Forwarding of packets between forwarding devices and controllers. 

SBI plays a crucial role in enabling intelligent provisioning of Networking devices, both physical and virtual. (OF) [16] is the 

prevailing SBI, widely adopted as an industry standard. Its primary responsibility is to design flows and categorize network 

traffic based on predetermined criteria rules. 

Conversely, the controller employs the (NBI) to enable application developers to integrate their applications with both the 

Devices for the controller and data plane. While controllers assist various APIs heading north, many are built on REST APIs. 

For communication between controllers, the West Bound Interface (WBI) is utilized. It's worth noting that there isn't a 

standardized This requires a communication interface., resulting in various controllers relying on various mechanisms. 

Furthermore controllers that are heterogeneous typically they do not communicate with one another. 

The (EBI increases the controller's capabilities to communicate with outdated routers. BGP [16] serves as most frequently 

employed This protocol is intended for this specific purpose. 

B. Evolution of SDN Controllers 
The design of modern SDN controllers of SDN networks represent a departure from the initial efforts to centralize network 

control, which date back to the mid-2000s. During that time, several attempts were created to segregate control logic from the 

data plane. For instance, SoftRouter [17], [18] and ForCES [18] were presented as solitary network devices designed to 

separate (CEs) from (FEs). However, these solutions were only capable of modifying packets functions because the majority 

of routers at that time lacked the intelligence in computing and network comprehension needed to carry out more advanced 

operations. (RCP) [19] were offered as intra-AS (Autonomous System). platforms to create a BGP control platform that can 

be expanded. Nonetheless, this approach was designed for network heterogeneity and was susceptible to single points failure 

to succeed. The (PCE) [20] was developed to allow customers to perform Router path computations, but it lacked a a 

specialized centralized path computation engine, as well as did not facilitate collaboration across many entities.(IRSCP) [21] 

introduced a An external router's path allocation module, enhancing dynamic interconnection for a single ISP service. 

Meanwhile, the 4D project [22] aimed to provide a clean-slate solution for introducing a topology discovery and traffic 
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forwarding logic control plane, but practical implementation was lacking. The SANE project [23], produced by the (NSF), 

aimed to enable traffic forwarding and access control regulations through the use of a within enterprise networks, a server 

that is logically centralized. Ethane, which succeeded the SANE project, offered an enhanced and improved control 

management module, with worldwide network awareness and pre-defined flow-based routing operations. However, both 

SANE and Ethane did not fully consider network components as a holistic entity and lacked flow-level regulation compared 

to conventional routing strategies. The control planes of these previous proposals were limited in terms of matching header 

fields and functionality. Consequently, SDN gained prominence with the advent of OpenFlow [16], which serves as a data-

plane (API), and the introduction of a dependable centralized controller called NOX [6]. OpenFlow differs from earlier since 

it is an open protocol that empowers software designers to create applications on various switches supporting flow tables with 

a flexible set of header fields. SDN improves agility and flexibility by enabling server fast responsiveness to network 

changes, virtualization, policy deployment and centralized management of the entire network. 

 

           CLASSIFICATION AND COMPARISON OF SDN CONTROLLERS 

To conduct a thorough comparison of various Controllers for SDN, we conducted an extensive review encompassing not only 

academic literature, as well as commercial sector. In this section, we initially outline the potential classification criteria for these 

controllers. Subsequently, we provide a comparative analysis and explore specific enhancements tailored to various use cases. 

A. Classification & Selection Criteria  

The operation of controllers is fairly consistent across Table I contains a collection of proposals. After evaluating 14 controllers, 

it becomes evident that the functioning, roles, as well as obligations of the the vast majority of these controllers don’t offer a 

basis for classification. It appears that the only feasible classification criterion is the deployment strategy. Initially, the SDN 

concept aimed to consolidate the control plane, leading to the use of a single controller. However, this approach posed 

challenges in terms of scalability and a single point of failure. The architecture is dispersed. addresses these issues by enabling 

the implementation of multiple within a domain, domain controllers, organized in either a horizontal or hierarchical structure. 

It's important to note that in this study, we did’nt limit controller selection based on any special requirements. Instead, we 

gathered all possible controllers from the literature and documented projects. To the best of our ability, there is no existing work 

which has compiled and compared such a substantial total number of controllers. 

B. Qualitative Comparison  

Table I provides a comprehensive overview of various attributes associated with the controllers. Due to space limitations and 

the fact that not all proposals offer in-depth insights into their internal mechanisms, we refrain from discussing each controller 

on is own. Instead, we show you the characteristics as well as design decisions of these controllers. 

 Programming Language: Controllers have been developed using a variety a variety of programming languages, including C, 

C++, Java, JavaScript, Python, Ruby, Haskell, Go, and Erlang. some instances, a single language is used to build the entire 

controller. However, in numerous other controllers, There are several languages. employed within their foundation and 

modules. This approach is adopted to enable efficient memory allocation, compatibility with various platforms, and, the most 

significant, to achieve superior performance in the face of specific conditions. 

Architecture: A critical design choice for a controller revolves around its structure, which may either be central or 

decentralized. Controllers that are centralized are primarily employed in smaller networks, in contrast to distributed controllers 

have the capability to extend spanning numerous domains. These distributed controllers can be categorized as either flatwhere 

all instances of controller share responsibility sharing, or even hierarchical, which includes a root administrator. 

Programmable Interface (API): In broad terms, the  (NBI) empowers the controller to support applications such as 

topological tracking, forwarding of flow, Virtualization of networks, load balancing, and detection of intrusions. These 

applications are driven by network events produced by data plane devices. Conversely, APIs at the lowest level, such as the 

Southbound API (SBI) have a distinct role. 
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TABLE I: SDN Controller’s Feature Comparison Table 

Name 
Programming 

Language 
Architecture 

Northbound 
API 

Southbound 
API 

Interface License Multithreading Documentation 

Beacon [24] Java Centralized ad-hoc OpenFlow 1.0 CLI, Web UI GPL 2.0 Yes Fair 

Floodlight [8] Java Centralized 
REST, Java 

RPC, Quantum 
OpenFlow 1.0, 

1.3 
CLI, Web UI Apache 2.0 Yes Good 

FlowVisor [25] C Centralized JSON RPC 
OpenFlow 1.0, 

1.3 
CLI Proprietary - Fair 

 

HyperFlow [26] 
 

C++ 

 
Flatly distributed 

 

- 
 

OpenFlow 1.0 
 

- 
 

Proprietary 
 

Yes 
 

Limited 

NodeFlow [27] JavaScript Centralized JSON OpenFlow 1.0 CLI Cisco - Limited 

NOX [6] C++ Centralized ad-hoc OpenFlow 1.0 CLI, Web UI GPL 3.0 Yes (Nox-MT ) Limited 

ONOS [10] Java Flatly distributed REST, Neutron 
OpenFlow 1.0, 

1.3 
CLI, Web UI Apache 2.0 Yes Good 

OpenContrail 
[28] 

C, C++, Python Centralized REST BGP, XMPP CLI, Web UI Apache 2.0 Yes Good 

 

OpenDaylight [9] 
 

Java 

 

 
    Flatly distributed 

REST, 

RESTCONF, 

XMPP, 

NETCONF 

 

OpenFlow 1.0, 

1.3 

 
CLI, Web UI 

 
EPL 1.0 

 
Yes 

 
Good 

 

OpenMul [29] 
 

C 
 

Centralized 
 

REST 
OpenFlow 1.0, 
1.3, OVSDB, 

Netconf 

 

CLI 
 

GPL 2.0 
 

Yes 
 

Good 

POX [7] Python Centralized ad-hoc OpenFlow 1.0 CLI, GUI Apache 2.0 No Limited 

RunOS [30] C++ Flatly distributed REST OpenFlow 1.3 CLI, Web UI Apache2.0 Yes Fair 

Ryu [11] Python Centralized REST 
OpenFlow 

1.0-1.5 
CLI Apache 2.0 Yes Good 

Yanc [31] C, C++ Flatly distributed REST 
OpenFlow 

1.0-1.3 
CLI Proprietary - Limited 

 

 

Threading : A A single-threaded controller is more efficient appropriate for SDN that is lightweight implementations, whereas 

Controllers with multiple threads are available better suited for commercial applications such as 5G, SDN-WAN, and networks 

of optical fibers. 

 Licensing, accessibility, and documentation: The controllers covered in this article are as follows predominantly open-

source, though a few are proprietary, restricting access to special requests or research purposes. Some controllers may not 

receive frequent updates due to difficulties in routine maintenance. Nonetheless, their source code is accessible online, enabling 

users to create necessary modifications. Our online investigation revealed that many controllers lacked adequate documentation. 

On the other hand, frequently updated controllers offer comprehensive and up-to-date documentation for all versions, along 

with community-based support. 

 
Routing in SDN Environment 

 

Achieving optimal routing is a critical objective in computer networks, and there are multiple methods to enhance routing 

based on various parameters. Moreover, the optimization of routing can differ depending on whether it pertains to regulate or transmit 

data. The centrally located nature of SDN controllers offers significant advantages compared to traditional routing methods. For 

instance, it allows for the easy extraction of network topology graphs and the dynamic calculation of efficient shortest-path algorithms 

like Dijkstra to identify the best routes. This Computer science algorithms are directly applied to computer networks[32] eliminates 

the requirement for They are being converted into distributed protocols and simplifies the creation of separate paths used in traffic 

engineering. 

SDN also provides the flexibility to customize routing based on various criteria, including optimal routing types (e.g., 

shortest route, shortest constrained route), price functions, and resource considerations. This adaptability enables the seamless 

configuration and deployment of routing strategies tailored to specific scenarios, recognizing that a single routing approach may not 

uniformly suit all types of networks [33]. 

 

Related Works 

 

The authors address the growing interest in Software Defined Networking (SDN) and the numerous OpenFlow controllers 

available for both research and commercial use. However, there is a lack of publicly available information regarding the architectural 

decisions that distinguish one controller's performance in real-world applications. 
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The primary aim of this research is to pinpoint critical performance limitations and highlight effective architectural decisions for 

creating efficient SDN controllers based on OpenFlow. To accomplish this objective, the authors evaluate the performance Includes 

four well-known open-source Controllers for OpenFlow: NOX, Beacon, Maestro, and Floodlight.To gauge the controllers' 

performance, the authors put them to use multi-threaded shared memory computers and subject them to benchmarking using various 

metrics, incorporating thread scalability, Scalability of switches, and delay. This assessment yields valuable insights and architectural 

guidelines that can enhance the current controllers' scalability guide the development of new ones. Drawing from these guidelines, the 

authors develop a new OpenFlow controller that surpasses existing controllers across different scalability metrics. Through the 

examination of architectural choices and performance evaluations, this research contributes to the enhancement of efficiency and 

scalability in OpenFlow-based SDN controllers. It provides valuable direction for researchers and developers in the SDN field, aiding 

them in the design and optimization of controllers for practical applications. 

 

Khondoker , et al. (2014) delve into the challenge of selecting the most suitable SDN controller, such as POX, FloodLight, or 

OpenDaylight, for specific research needs. To assist researchers in making well-informed decisions, their paper introduces a decision-

making template. The decision-making template operates as follows: Firstly, it conducts an analysis of existing open-source 

controllers to compile their properties. Subsequently, it employs a matching mechanism to align the properties of these controllers 

with the particular requirements of the researcher. For instance, if the researcher's requirement specifies a "Java" interface, the chosen 

controller must meet this criterion. Additionally, the study considers optional requirements, such as a preference for a GUI or the age 

of the controller. To evaluate controllers based on these optional criteria, the paper utilizes the (AHP), a technique for (MCDM). The 

AHP is modified by incorporating a Mechanism of monotonic interpolation/extrapolation that relates the values of controller attributes 

to a predefined scale. Using this adapted AHP, the research compares the top five controllers and concludes that "Ryu" emerges as 

depending on the best suited controller on their exact specifications [34]. 

 

Salman , et al. (2016) recognize the development of numerous controllers and the various studies conducted to assess and 

compare their performance in recent years. Importantly, their paper introduces new controllers, specifically ONOS Controllers based 

on libfluid (raw, base), and evaluates their performance Cbench is being used, an OpenFlow testing software. While the outcomes 

highlight that MUL and Beacon controllers demonstrate the highest performance, the research underscores the importance of selecting 

the most suitable controller based on a range of criteria that align with user requirements. In essence, different controllers may excel in 

distinct aspects, underscoring the significance of researchers or users choosing the controller that best fits their specific needs and 

objectives [35]. 

 

Zhu , et al. (2019) underscore the importance of accurately assessing and benchmarking the performance and capabilities of 

SDN controllers. Despite numerous controller proposals in existing literature, there's a noticeable absence of quantitative comparative 

analysis. To bridge this gap, the research delivers an extensive qualitative contrast of various SDN controllers and conducts a 

measurable examination in terms of their performance across diverse situations for networks. They Classify and categorize 34 

controllers determined by their functionalities and provide a high-quality assessment of their characteristics. Furthermore, the study 

delves into the benchmarking tools' capabilities designed for evaluating SDN controllers and outlines effective methods for 

quantitatively assessing these controllers. The research employs three benchmarking instruments evaluate there are nine controllers 

based on a number of criteria. Overall, this research provides comprehensive insights into the performance, benchmarking standards, 

and assessment setups for SDN controllers. By shedding light on the capabilities and performance of different controllers, this study 

makes a valuable contribution to the field of SDN and offers guidance to network practitioners and researchers [36]. 

 

SHARIF, et al. (2020)  highlight the critical importance of precise and effective benchmarking tools for assessing controller 

performance across different evaluation parameters. Despite the presence of numerous controller proposals in both general and 

specialized network domains within the literature, there exists a noticeable lack of comprehensive quantitative analysis for these 

controllers. To address this gap, the research offers an extensive qualitative contrast of various SDN controllers and conducts 

quantitative evaluations of their efficiency under diverse situations for networks. They Classify and categorize 34 and provide a 

qualitative comparison of their attributes. Furthermore, the study includes a controller comparison analysis specifically designed in the 

case of specialized networks, including the (IoT), Networks based on blockchain, transportation networks, and Sensor networks that 

operate wirelessly. This comprehensive approach provides a deeper understanding of controllers tailored for specific use cases. 

Additionally, the authors delve into the benchmarking tool capabilities and conduct a detailed comparison analysis to select the most 

suitable tools for performance assessment. The research employs three benchmarking tools to evaluate nine controllers, resulting in a 

comprehensive performance analysis for each controller and offering insights into the performance of specialized network controllers. 

By delivering a comprehensive analysis of SDN controllers and their performance across various network scenarios, this research 

contributes valuable insights to the field of SDN. It provides a holistic understanding of controller capabilities and benchmarking 

methodologies, offering valuable guidance for both researchers and practitioners in the field of SDN [37]. 

 

Gupta, et al. (2022) The authors discuss the development of various SDN controllers, such as Beacon, Floodlight, Ryu, ODL, 

ONOS, NOX, and Pox, to cater to the diverse range of SDN applications and requirements. The research underscores the importance 

of selecting the most appropriate controller based on specific application needs. The paper explores the evolution of networking 
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architecture from a fully scattered form to a more concentrated one with the advent of SDN. It assesses and compares the effects many 

types SDN controllers on SDN. The study places particular emphasis on SDN controllers, considering them as the "brains" of the 

network, and delves into their distinctions to identify the most optimal controller overall. By using the simulation environment 

Mininet the research conducts a performance comparison of SDN controllers like Ryu, ODL, and others. It presents the experimental 

findings, demonstrating how ODL in comparison to other controllers various network architectures, including both standard and 

customized topologies integrated with ODL. ODL is recognized as the preferred controller due to its superior bandwidth and reduced 

latency [38]. 

 

 

Discussion 

In this study, we explored Software Defined Networking  controllers and their significance in the SDN architecture. SDN controllers 

serve as the central element responsible for managing and orchestrating the data plane, making their performance and capabilities 

crucial for optimizing network operations. Our objective was to determine the most appropriate SDN controller for our particular 

network scenario, and after a comprehensive evaluation, we chose the Ryu controller for several compelling reasons. When selecting 

an SDN controller, several key criteria come into play, including performance, scalability, flexibility, ease of use, and community 

support. The chosen controller should align with the specific requirements and objectives of the network deployment. The process of 

evaluating and comparing SDN controllers is essential to make an informed decision and ensure that the selected controller meets the 

needs of the network environment. Our evaluation involved a comparative analysis of several prominent SDN controllers available in 

the literature, including Beacon, Floodlight, Ryu, ODL, and others. Each controller was assessed based on its strengths and 

weaknesses, and how well it aligns with our specific evaluation criteria. After careful consideration and benchmarking, the Ryu 

controller emerged as the most suitable option for our network scenario. Ryu demonstrated exceptional performance in terms of 

scalability, flexibility, and compatibility with our network environment. It provided robust support for various protocols, making it 

highly adaptable to our network's evolving needs. Furthermore, Ryu offered extensive community support and active development, 

ensuring continuous updates and improvements. 

 

 

Conclusion 

We conducted a comprehensive assessment of 14 publicly accessible OpenFlow controllers, thoroughly examining their architectural 

designs to identify their respective strengths and weaknesses. Our findings provided valuable insights and guidelines that can be 

utilized to achieve consistent enhancements in the performance of SDN controllers. Additionally, we developed a new controller 

based on the derived guidelines, which demonstrated significant improvements in terms of throughput, latency, and switch scalability. 

The proposed controller's performance consistently outperformed the existing ones, showcasing its potential for more efficient and 

effective network operations. 
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